On negative streamers: A deterministic approach
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The formation of streamers and spontaneous branching is commonly observed in dielectric
breakdown phenomena. We discuss a deterministic streamer model that explains branching
phenomena in terms of a Laplacian instability similar to that found in viscous fingering. Particular
attention is paid to the physical interpretation of the model2084 American Association of Physics

Teachers.
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[. INTRODUCTION for dielectric breakdown have been propdssihce then.

Branching would occur due to randomly distributed ioniza-
If we apply an electric field to a volume filled with neutral tion avalanches.

particles, electric current will not flow through the volume, We use a fully deterministic fluid model with pure impact

because there are no charged particles present. Thus, a v@nization. It was a surprise that anode directed streamers

ume filled with a gas of atoms is an almost ideal insulatorbecome unstable and develop branching. We have proposed a

Air is a good example of such an insulator. A cubic centime-branching mechanism that is qualitatively different from

ter of air contains roughly 2710 molecules of oxygen other mechanisni$This mechanism for branching is related

(0y), nitrogen (N), water vapor, and some other gases. Thelo @ Laplacian interfacial instability. There are other systems

charged particles are bound by powerful electric forces téuch as solidification or viscous fingers in which the normal

form electrically neutral atoms and molecules, and as a resu@ifowth velocity is proportional to the gradient of a bulk field
the air is an excellent insulator. which obeys a Laplace or diffusion type of equations. For the

If a strong electric field is applied to matter of low con- reader interested in these examples of instabilities and their

ductivity and some electrons or ions are created, then the fegomparison to with streamer calculations presented here, we
mobile charges can generate an avalanche of more chargédggest Ref. 10.

by impact ionization. A low temperature plasma is created, If the gas density is low, it could be argued that the fluid
resulting in an electric discharge. Examples range from natunodel is no longer valid and a statistical description in terms
ral phenomena such as lightning and St. EImo’s-fieeneon  of molecular dynamics or kinetic theory would be more suit-
tubes, TV displayé,and industrial plasma reactors for com- able. How individual processes at the atomic scale are related
bustion gas cleaning. to the macroscopic or mesoscopic physics is a fundamental

Discharges are nonequilibrium processes that occur in iniquestion without an easy answer. This question needs to be
tially nonionized matter exposed to a strong electric field.answered if the branching mechanism discussed here is to be
Understanding the basic mechanisms of an electric discharggodeled using stochastic dielectric breakdown simulations.
is a challenging problem involving ideas from nonequilib- In this paper we will introduce the fluid model that incor-
rium thermodynamics, atomic physics, electromagnetismporates the physical ingredients needed to describe a
and pattern formation. Discharges can assume many differefPnattaching gas such as nitrogen under normal conditions.
modes of appearance depending on the spatial and tempoﬂm Sec. Il some numerical simulations based on this model
characteristics of the electric field and on the ionization andire discussed. In Sec. IV streamer branching is investigated
charge transport properties of the medium. Phenomenologanalytically and the main results for stationary planar fronts
cally, discharges can be classified into stationary ones, sucie€ summarized. In Sec. V we discuss our results for shock
as arc, glow or dark discharges, and transient ones, such #onts, and in Sec. VI we study the stability of the planar
sparks and leadefsThe distinction between the various dis- shock front. In Sec. VIl we obtain the asymptotic behavior of
charge phenomena varies among authors. the dispersion relation, and in Sec. VIII we finish with a

A streamer is a sharp ionization wave that propagates intsummary and discussion of future work that is needed.

a nonionized gas, leaving a nonequilibrium plasma behind.

They have been reported in early stages of atmospheriﬁ_ THE STREAMER MODEL

discharges such as sparks or sprite dischar§eStreamers

can split into branches spontaneously, but how this branching |n this section we presentrainimal streamer model, that

is precisely determined by the underlying physics is an opefs, a fluid approximation with local field-dependent impact
question. ionization reactions in a nonattaching gas like argon or

To model the initial stage of dielectric breakdown, when anitrogen’?
gas suddenly changes from being an insulating dielectric to a The balance equations for electrons and ions are
conducting gas, RaetHercharacterized rare long-range )
photo-ionization events as stochastic processes that enhance INet Vreje=S (1a)
ionization avalanches. The idea is that photons, which have 5 {1y .i =g

. P . i R'Ji y (1b)
been created by atoms that previous collisions have excited,
initiate secondary avalanches. In this scenario, avalanch&#heren; andj,; are the particle densities and currents of
are randomly distributed at differents points near theelectrons and ions, respectively, aBdis the source term.
streamer head. Some phenomenological stochastic modelfie fact that the source terms on the right-hand side of Egs.

1283 Am. J. Phys.72 (10), October 2004 http://aapt.org/ajp © 2004 American Association of Physics Teachers 1283



(18 and(1b) are equal is due to conservation of charge in an To identify the physical scales and the intrinsic parameters

ionization event. of the model, it is convenient to reduce the equations to
The electron particle curreit is approximated as the sum dimensionless form. The natural units are given by the ion-
of a drift and diffusion term ization lengthRy= e, *, the characteristic impact ionization
jo=— tefNe—DVrNe, ?) field &, and the electron mobilityt, which leads to the

velocity scalevg= &, and the time scale,=Rgy/vg. The
where¢ is the electric field angk, andD are the mobility  values for these quantities for nitrogen at normal conditions
and diffusion coefficient of the electrons. In equilibrium, the gre agt~2.3 um, £~200 kV/m, andu.~380 cnf/Vs.
kinetic theory of gases links diffusion to mobility through the e introduce the dimensionless variabfes = RIRy, t
Einstein relationD./u.=kT/e. For anode-directed stream- _ 7/ 79, the dimensionless field=&/&,, the dimensionless
ers, the ion current can be neglected because it is more th%rp ' ’

. ectron and ion particle densities=n./ny and p=n; /n,
two orders of magnitude smaller than the electron one, so we . _ . | e
With ng=¢q&,/(eRy), and the dimensionless diffusion con-

will take
) stantD =D/ (Rgvy).
Ji=0. ) In terms of dimensionless variables, the model equations
The electric field due to the charged particles is deter-become
mined by Poisson’s equation dipe—V-i=pof (|E]), )
Vr€=e(ni—ny)/eg. (4)
e =D, ®
The coupling between the space charges and the electric field
makes the problem nonlinear. pi—pe=V-E, 9)
The source termS accounts for the creation of free _
charges by impact ionization. Initially, an electron liberated ~ peE+DVpe=]j. (10

by an outside agent, such as radi_ation, _is accelerated in 'ﬁﬁe functionf (|E) from Townsend's approximation is
strong local field. The electron collides with a neutral mol- PP
ecule and ionizes it. The result is generation of new free f(IED=IEla(lED = E

. = =|E|lexp— 1/|E|). 11
electrons and a positive ion. This ionization rate is given by (IED=IEl(|E) =[Elexp IED 1
the product of the drift current of free electrops.&ne| and
the ionization coefficien(|£]). The ionization coefficientis !l!- SIMULATIONS
relqted to the (jen.slty. of the neutrallpamcles of the gas and In confined geometries streamers usually have a nontrivial
their effective ionization cross sections and represents th like sh 9 | [t >ually be ob d
merse ofth ioniaton mean fee path, The' caluatorT0° e Shape, n gerers b fegons an b sbsenen
rom first principles of this coefficient is not easy. Townsen ; - . S .
gave a pr?enongenological approximafidoy treati)rllg it as a quasme_utr:_al and equipotential. The outer region is filled with
process activated by drift energy gained from the fslgs] € nonionized gas. These two regions are separated by a
(\ is the total scattering mean free pathvith activation very narrow region in which most of the ionization process is

energyA. These considerations lead to a formula analogou akm_g plac(:je. In this sarlne spacel there IIS a n?_nﬁjero ((:jharge
to that of Arrhenius for thermally activated processes ensity and consequently a very large electric field gradient.
This is one of the reasons why accurate simulations are
_go

C —A rather demanding. These features are strongly reminiscent of
a(|&])=—exp oo | = @ exp T4 | (5)  what occurs in combustion froffsand viscous fingering’
A en|é |€] . : ; :

We discuss the numerical simulations of the streamer
whereC is a dimensionless constant afig=A/eN has di- model based on Eq$7)—(11). We assume cylindrical sym-
mensions of electric field. So the source term is metry. A planar cathode is locatedzt 0 and a planar anode

S=|w.En.l anexo —EJ1ED. 6 is atz=2000. The raglial coordinate extends from the or_igin

| el ao expt = ol _|) o © up tor =2000 to avoid lateral boundary effects on the field

In the source tern(6), the ionization due to the photons configuration. The stationary potential difference between
created by recombination or scattering events is neglecteghe electrodesA ® = 1000, corresponds to a uniform back-

This neglect is justified if the cross section of the photoion-qnd fielde = —0.5¢,, wheree, is the unit vector in the
aﬁ

ization process is much smaller than that due to electrongrecion, For nitrogen under normal conditions, the separa-
Photoionization can be taken into account, but the dynamicg{,, of the electrodes corresponds to 5 mm and a potential
equations would become nonlocal. In attaching gases I'k(aifference 0f 50 KV. We choosB = 0.1, which is appropriate

oxygen, a third kind of Chﬂfge.d species needs 1o be take r nitrogen, and as the initial condition an electrically neu-
into account, namely, negative ions formed by a neutral mol;

. tral Gaussian ionization seed on the cathode

ecule catching a free electron.

Note that our balance equatioridg) and(1b), are deter- P — ) — 10 6a—(Z2+12)/1007
ministic, and stochastic effgcts are not included in the model,  Pe("2= 1=0)=pi(r,2,t=0)=10"%e T, (12)

We need to specify the appropriate boundary and initial
conditions. We ignore the details of the plasma initiationAt the electrodes we take no flux of charges as boundary
event(for example, triggering by radiation from an external conditions, so we use homogeneous Neumann conditions for
sourcg, and assume that &&=0 a small well-localized ion- the charge densities.
ization seed is present. We make this assumption clearer in The parameters of the simulation are essentially the same
the following. Boundary conditions will be discussed in as in the earlier simulations of Ref. 16 except that our back-
Sec. Il ground electric field is twice as large; the earlier work had 25
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Fig. 1. Evolution of spontaneous branching of anode directed streamers in a strong homogeneous background fietd=80m&s65, 420, and 450. The
model and initial and boundary conditions are discussed in the text. The planar cathode is loeat@daatd the planar anode is zt 2000 (shown is 0
<z=<1400). The radial coordinate extends from the origin up #2000 (shown is G<r<600). The lines denote levels of equal electron dengityvith
increments of 0.2 as indicated by the labels.

kV applied over a gap of 5 mm. These parameters correebserved. Such branching phenomena have been observed in

spond to a dimensionless background field of 0.25, andome simulations with improved accuracy and different

branching was not observed. boundary and initial condition¥ There have been some dis-
We used uniform space—time grids with a spatial mesh otussions of the possibility of this branching being a numeri-

1000x 1000. The spatial discretization is based on localcal artifact’® In the following sections we will see some

mass balances. The diffusive fluxes are approximated in sta@nalytical evidence that this branching is due to an intrinsic

dard fashion with second-order accuracy. For the convectivinstability of the equations of the model.

fluxes a third-order upwind-biased formula was chosen to

reduce the numerical oscillations that are common with\V. THE ONE-DIMENSIONAL STREAMER

second-order central fluxes. Such oscillations can be CONEQUATIONS IN A COMOVING FRAME: THE

pletely avoided, for example, by flux-limiting, but prelimi- p| ANAR FRONT

nary tests showed that the upwind-biased formula already

gives sufficient numerical monotonicity and is much faster. In Sec. Ill some numerical evidence of branching was pre-

Time stepping is based on an explicit linear two-step methodsented. We now investigate the existence of branching by

where at each time step the Poisson equation is solved by ttamalytical methods. We will start with the solution for a sta-

FISHPACK routine. References for these procedures can b#onary planar front. The idea is to find a uniformly translat-

found in Ref. 17. ing front and investigate how the transverse perturbation of
In Fig. 1 we can see the results of some of the simulationghis solution will develop.

of the model. The evolution of a negative streamer toward For planar fronts, we assume that charge varies only in the

the anode is displayed, and the development of branélisng z direction. Thus, Eqs(7)—(10) become
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JtPe— az(peE)_D‘?gpe_Pef(|E|):0: (133 0.2}

api—pef(|E))=0, (13b) © o4} /\
0 'y i 1

d,E=pitpe=0. (130 -40 -30 20 -10 0 10
We will change our reference frame to a frame moving with ) ) ' )

velocity v in the z direction (,y,é=z—vt). Equation(13) a 0.1}
becomes
0 . . ; .

pe=vdgpe+ I peE) +DdZpe+ pef (|E]), (143 40 %0 20 o 0 10
dpi=vdepi+pef([E), (14b) W o
9E—pi+pe=0. (149 By _ \ -

A front moving uniformly with velocityv in the fixed frame —0 -30 -20 £ -10 0 10

is stationary in this comoving frame);p.=d;p;=0. As a

result, the corresponding front profiles are solutions of ordiFig. 2. Electron density,, ion densityp; , and electric fielcE for a nega-

nary differential equations. t?ve ipnization front moving withv =|E..| in the comoving frame. The far
We need to determine the boundary conditions. The field®€d is E-=~1 andD=0.1.

is completely screened in the ionized region and is approxi-

mately constant in space and time far ahead of the front.

Hence, we tak& as V. SHOCK FRONTS
_ 0 (z=—=), (15) We will simplify our model a bit more by taking the limit
E.e, (z—+x), D=0 in the streamer equations. It reduces the order of the

. » . equations and makes it possible to integrate them explicitly.
where I_Ec,o is a constant. These boundary .condltlo_ns 'mpl}’Then, in the comoving frame, using Ed.4), we have for a
that a time independent amount of charge is traveling W'th'nstationary front

the front, and no currents flow far behind the front in the

ionized regime. vepet de(peE) + pef (|E[) =0, (17
For a nonvanishing far field&.,, there is a continuous _

o d:pi+pef(|E|)=0, 18

family of uniformly moving front solutiond??° because the vaepi+ pef([ED) (18

front propagates into an unstable stdtén particular, for d¢E—pi+pe=0. (19

E.>0 there is a solution for any velocity=0, and for We can solve this system of equations analytically. If we

E..<O0, thgre is a §o|ution for any2|Em.|. The;e solutions g ptract Eq(18) from Eq.(17) and use Eq(19) to eliminate
are associated with an electron density profile that decay:

, Y P B.— pi, we obtain
asymptotically for largeé as po(&)xe *¢ with A\=0. We
refer the interested reader to Ref. 21. —vd:E+pE=0. (20

In practice, not all these uniformly propagating solutionsgqyation(20) is a consequence of charge conservation as we
are observed,zgijt o_nl_y_ a specific one that it is cal!ed the.an see by writing?,q+ V +j,=0, with the total charge de-
selected front?2! I initially the electron density strictly fined asq=p;—p.. In our model each ionizing collision

. . . - i~ Pe-
\ianlshes r:)eyond a certain poigy (corresponding to produces the same number of negative and positive charges,
=), so that so we haveV-j,=0. The total current is given bj,=dE
pe=0=p; for ¢&>¢&, att=0, (16) +pcE, and for a planar front with constant and time inde-
_ _ _ . i pendent fieldE=E.e, in the nonionized region wherg,
then t.he electron densny will yamsh fqr all timés 0 in a —0, the total current=jw(t)e, vanishes. In the comoving
coordinate system moving with velocity=|E..|, and an  frame of Egs.(14) and(17)—(19), we arrive at Eq(20).

ionization front propagating with the electron drift velocity ~ The front equations reduce to two ordinary differential
|E.| develops. In the remainder of the paper, we will con-equations forp, andE,

sider this case.

In Fig. 2 we show the solution of E€14) with the bound- I (v+E)pel=—pef(E), f(E)=|E[a(E), (21
ary conditions, Egs(15) and (16). We have chosen the far _
: Bniae - vdgIn|E|=pe, (22)
field E..=—1 and the diffusion coefficierld =0.1. The nu- ) ) )
merical calculations were done using a shooting method fowhich can be solved analytically to give
solving our two-point boundary value problémThis tech-

nigue consists in choosing values for all of the dependent pJ[E]= Lpi[E], (23
variables at one boundary. We then integrate the ordinary v+E

differential equations by initial value methods, arriving at the |E..| f(X) E.|

other boundary. In general, we find discrepancies with the p,[E]= —dx=J a(x)dx, (249
desired boundary values there. Next we adjust the free pa- el X |E|

rameters at the starting point to reduce the discrepancies at E(&) v +X dx
the other boundary. The idea is to iterate this procedure until  £,— §1:J

(29
we obtain the desired accuracy.

E(¢1) Pi[X] X
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Fig. 3. The electron density,, ion densityp;, and electric fielde for a
negative ionization shock front moving with=|E..| in the comoving
frame. The far field i€..=—1.

Equations(23) and (24) give p. and p; as a function ofE,
and the spatial dependenEe=E(¢§) is obtained implicitly,
asé=¢(E) in Eq. (25). In Fig. 3 the solution$23)—(25) for

a shock front moving witlv =1 are shown. We have chosen
glz 0 andE(fl) = EOO

V1. STUDY OF INSTABILITIES: CORRUGATION OF
THE FRONT

(v+Eg)dzper=(S+2peo—pio—f ) per— Peopit

+(5gPeO_PeOf,)ag(ﬁl_S&gPeO! (279
vd;pi1= — fpertSpir1—peof’ I b1—59,pio, (270
(97—K*) 1= per— pi1+ K?Eq. (279

In Eq. (27) we denotef =f(E,), f’:a‘E‘f(|E|)|EO, andE,
=—3d;$o({) as the electric field of the uniformly translating
front. In Eq.(270), the termk?¢, arises as a consequence of
the dependence of the electric potentiaborEquation(27)
can be written in matrix form as

Pe1 Pe1l SagpeO/(U +E)
pi1 pi1 S piolv
J =Mg* — , (28
I4 ‘ﬂl s,k 'ﬂl _ Ek2 ( )
b1 b1 0
where
S*+2peo—f—pic —Peo IiPeo— Peof’
v+E v+E v+E
—f S —peof’
Ms e v ? 0
1 -1 0 k2
0 0 1 0
(29

Note we have introduced an auxiliary figld = d,¢ , which
is the positive derivative of the electric field to order

The planar shock front may be unstable with respect to Now that we have obtained the first-order perturbation
periodic perturbations on the surface of discontinuity whichequations, we can discuss the boundary conditions. First we

then form “ripples” or “corrugations” on the surface. In this

consider the boundary conditions &&0. There are two

case, we are interested in obtaining the dispersion relation tiypes of boundary conditions, one arising from the bounded-

find which mode will grow faster and eventually determine

ness of densities to the left of the shock frongat0~, and

the characteristic shape of the streamer. Here we will derivéhe other arising from the continuity of fields across the po-

the perturbed equations and the boundary conditions.
Let the planar shock front that propagates intoztwrec-

sition {=0 of the shock front. From Eq17) we find that
(v+E)d,pe is finite for all z, also forz—0~ and forz=0,

tion receive a small perturbation with an arbitrary depenecause +E)d,pe=pe(pe—p;—f ) is finite. The same is

dence on the transverse coordinateandy. Within linear

perturbation theory, the perturbation can be decomposed in%d ©+E)a

Fourier modes. Therefore we need the growth sékg of an
arbitrary transverse Fourier mode to predict the evolution o

an arbitrary perturbation. Because of isotropy within the
(x,y) plane, we can restrict the analysis to Fourier modes in

the x direction, and we consider linear perturbations
«cexp@t+ikx). This notation anticipates the exponential
growth of such modes. A perturbation also will lead to a
perturbation of the position of the ionization shock front.
Hence, we introduce the variable= ¢ — e exp(kx+st) and
the ansatz

Pe(X, L, t) = peo({) + €per (L), (269
pi(X,{,t) = pio( L)+ €pi1 (L) e, (26b)
B(X, L) = o) + €y (L), (260

wherepgg, pig, andgg are the electron density, ion density,
and electric potential of the planar ionization shock front

true for pggy. In particular,f'_|dz(v+E)azpeo—>0 asl—0,
pe0—0 asz—0". Therefore we impose the

Fame conditions fop.;, namely

|
—0Y ~I

lim (v+E)dpe1=0. (31
(=0~
We will now make use of the continuity conditions. We
match the/<<0 solution to the/>0 solution. In front of the
shock there are no sources, and thus we have to 3tive
=0 for (>0 andV¢=—-E.z2=vZ when {—o. The solu-
tion to first order ine has the form

pe=0, (32
pi=0 for >0, (33)
p=a+vi+e(v+be Kl (34)

obtained in Sec. V. Note, however, that these planar solutions: . . _
are shifted to the position of the perturbed front. The substiwith the undetermined integration constaatandb.

tution of Eq.(26) into Eq.(14) (with D=0) gives to leading
order in the small parameter
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finite everywhere. From Eq18) p; is continuous, ang,
and|E| are bounded for alt. From the continuity op; , we
have

Iim[pi(x,§+,t)—pi(x,gf,t)]zo, (35)
{—0

which implies that
pi1(0)=0, (36)

where we have used Eq®82) and(26) for the right and left
limits.

The continuity of the electric field to first order inim-
plies that

lim[9;4(x,0,0)|;+ = d,h(x,{D)|-1=0, (379
(=0
Ilm[&x¢(X!§1t)|§+_[9X¢(Xié/1t)|§*]:0 (37b)
(=0

If we use Eqs(32) and(26) again, these conditions become
#1(0)=—kb, ¢1(0)=v+b. (38

If we impose the continuity of the potential, we obtain
= ¢(0) and®4,(0)=v +b (which is the same condition ob-
tained from the continuity of the electric figld=inally, from
Egs.(30) and(31), andf = py when{—0, we have

sff’

1(0)=s, pe(0)= 5

We collect the result$35), (38), and (39) to obtain in the
limit of {10

(39

per st/ (0)/(1+5/f(v))

i z10 0
[z)ﬁi - . (40)
b1 (vk—s)/k

The other boundary conditions && — o are that the total

Pe1 Pe1 agpe/(v‘i'E)
d/l pin | =Ngye| Pir | —|  depilv | +0O(K?),
1 1 0
(42
where
St2pe—f—pi —pe Ipe—pef’
v+E v+E v+E
Ng k= —f s —pef’” | +0(k?)
v v v
1 -1 0
(43

is the truncated matrik  (29). The fourth decoupled equa-
tion is

1=ty (44)
The boundary conditiof40) is
(pel> 10 ( f/(1+s/f ))
pi1 | —— 0 +0(Kk?), (45
i 1
and
vk—=s v 1
h(O=—9—=35 "1 (46)
Equations(44) and (46) give a condition ony; :
vk—s 0
= f Dz (47

Consider now the limis<f(v). Then Eqs(42) and(45)
become identical up to orde¥f(v) to the perturbed equa-
tions obtained from an infinitesimal change Bf,. If we
compare two uniformly translating fronts with infinitesimally
different field E,, at identical positions, their linearized dif-

charge equals zero and the electric field vanishes. These cofg¢rence solves the same equations. In this césés inde-

ditions can be expressed as

pendent ofs andk. But then Eq.(47) implies that

Petl Pel s=vk+0(k? for k<a(v). (48)

pin | Pe1 (41) Equation(48) has an immediate physical interpretationk 1/

21 o is the largest length scale involved. It is much larger than the
b1 N thickness of the screening charge layer. Therefore the charge

layer can be contracted to&function contribution along an
interface line. Such a screening charged interface has an in-
stability ats=uvk.

In the opposite limit ofk sufficiently large, we also can
find a relation for the dispersion. We make the assumption
that the ion and electron densities remain bounded and use
Eq. (28) to write the equations fog; and ¢, as

wherepg; and ¢, are constants.

VIl. DISPERSION CURVE

In Sec. VI we formulated an eigenvalue problem. Giken

we want to finds(k) such that there is a solution for the = K3(¢p1+E), (499
transverse perturbation equatid@®) fulfilling the boundary
conditions, Eqs(40) and (41). In general, an analytic treat- debr1=11. (49b)

ment for any value ok is not possible, and we have to resort

to numerical calculations However, in th(_a Iimits of small field for /<0 can be approximated by making an asymptotic
and large wave number, the equations simplify, and we Ca@xpansion of Eq(23)—(25):%3

obtain the asymptotic behavior of the dispersion relation

On the short length scale, K./ the unperturbed electric

s(k). E=—-v—"f(v){, (50
We start with the smalk-limit. If Egs. (28) and (29) are |t we substitute Eq(50) into Eq. (493, we obtain

evaluated only to first order ik, ¢, decouples and we ob- ) 5

tain Izp1=K(p1—v—1F(v)J). (51)
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The boundary conditiori40) fixes ¢,(0)=(vk—s)/k and  curvature?® Another possibility is diffusion phenomena,
1(0)=d,¢1=s. The unique solution of Eq51) with these which we did not consider in the shock front case. Diffusion

initial conditions is was neglected to prevent mathematical challenges, but
sooner or later we have to face this challenge.

b O =v+f(v)— f(v) eké 4 f(v)—25e_k§ (52) The physics of low temperature plasmas is an area where

2k 2k many fundamental questions still remain unanswered, and

where experiments have been ahead of theory. When | hear
some pessimistic voices for the future of physics, | think
g]ere is much room at the bottom to enjoy the show.

for {<0. The mode=™ ¥ would increase rapidly toward de-

creasingZ, create diverging electric fields in the ionized re-
gion, and cannot be balanced by any other terms in the equ
tion. Therefore it has to be absent. The requirement that its,

coefficient ((v)—2s)/2k vanishes fixes the dispersion rela- Electronic mail: m.arrayas@escet.uric.es
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