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The formation of streamers and spontaneous branching is commonly observed in dielectric
breakdown phenomena. We discuss a deterministic streamer model that explains branching
phenomena in terms of a Laplacian instability similar to that found in viscous fingering. Particular
attention is paid to the physical interpretation of the model. ©2004 American Association of Physics
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I. INTRODUCTION

If we apply an electric field to a volume filled with neutral
particles, electric current will not flow through the volume,
because there are no charged particles present. Thus, a vol-
ume filled with a gas of atoms is an almost ideal insulator.
Air is a good example of such an insulator. A cubic centime-
ter of air contains roughly 2.731019 molecules of oxygen
(O2), nitrogen (N2), water vapor, and some other gases. The
charged particles are bound by powerful electric forces to
form electrically neutral atoms and molecules, and as a result
the air is an excellent insulator.

If a strong electric field is applied to matter of low con-
ductivity and some electrons or ions are created, then the few
mobile charges can generate an avalanche of more charges
by impact ionization. A low temperature plasma is created,
resulting in an electric discharge. Examples range from natu-
ral phenomena such as lightning and St. Elmo’s fire1 to neon
tubes, TV displays,2 and industrial plasma reactors for com-
bustion gas cleaning.3

Discharges are nonequilibrium processes that occur in ini-
tially nonionized matter exposed to a strong electric field.
Understanding the basic mechanisms of an electric discharge
is a challenging problem involving ideas from nonequilib-
rium thermodynamics, atomic physics, electromagnetism,
and pattern formation. Discharges can assume many different
modes of appearance depending on the spatial and temporal
characteristics of the electric field and on the ionization and
charge transport properties of the medium. Phenomenologi-
cally, discharges can be classified into stationary ones, such
as arc, glow or dark discharges, and transient ones, such as
sparks and leaders.4 The distinction between the various dis-
charge phenomena varies among authors.

A streamer is a sharp ionization wave that propagates into
a nonionized gas, leaving a nonequilibrium plasma behind.
They have been reported in early stages of atmospheric
discharges5 such as sparks or sprite discharges.6 Streamers
can split into branches spontaneously, but how this branching
is precisely determined by the underlying physics is an open
question.

To model the initial stage of dielectric breakdown, when a
gas suddenly changes from being an insulating dielectric to a
conducting gas, Raether7 characterized rare long-range
photo-ionization events as stochastic processes that enhance
ionization avalanches. The idea is that photons, which have
been created by atoms that previous collisions have excited,
initiate secondary avalanches. In this scenario, avalanches
are randomly distributed at differents points near the
streamer head. Some phenomenological stochastic models

for dielectric breakdown have been proposed8 since then.
Branching would occur due to randomly distributed ioniza-
tion avalanches.

We use a fully deterministic fluid model with pure impact
ionization. It was a surprise that anode directed streamers
become unstable and develop branching. We have proposed a
branching mechanism that is qualitatively different from
other mechanisms.9 This mechanism for branching is related
to a Laplacian interfacial instability. There are other systems
such as solidification or viscous fingers in which the normal
growth velocity is proportional to the gradient of a bulk field
which obeys a Laplace or diffusion type of equations. For the
reader interested in these examples of instabilities and their
comparison to with streamer calculations presented here, we
suggest Ref. 10.

If the gas density is low, it could be argued that the fluid
model is no longer valid and a statistical description in terms
of molecular dynamics or kinetic theory would be more suit-
able. How individual processes at the atomic scale are related
to the macroscopic or mesoscopic physics is a fundamental
question without an easy answer. This question needs to be
answered if the branching mechanism discussed here is to be
modeled using stochastic dielectric breakdown simulations.

In this paper we will introduce the fluid model that incor-
porates the physical ingredients needed to describe a
nonattaching11 gas such as nitrogen under normal conditions.
In Sec. III some numerical simulations based on this model
are discussed. In Sec. IV streamer branching is investigated
analytically and the main results for stationary planar fronts
are summarized. In Sec. V we discuss our results for shock
fronts, and in Sec. VI we study the stability of the planar
shock front. In Sec. VII we obtain the asymptotic behavior of
the dispersion relation, and in Sec. VIII we finish with a
summary and discussion of future work that is needed.

II. THE STREAMER MODEL

In this section we present aminimal streamer model, that
is, a fluid approximation with local field-dependent impact
ionization reactions in a nonattaching gas like argon or
nitrogen.12

The balance equations for electrons and ions are

]tne1¹R"je5S ~1a!

]tn i1¹R"ji5S, ~1b!

wherene,i and je,i are the particle densities and currents of
electrons and ions, respectively, andS is the source term.
The fact that the source terms on the right-hand side of Eqs.
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~1a! and~1b! are equal is due to conservation of charge in an
ionization event.

The electron particle currentje is approximated as the sum
of a drift and diffusion term

je52meEne2De¹Rne , ~2!

whereE is the electric field andme andDe are the mobility
and diffusion coefficient of the electrons. In equilibrium, the
kinetic theory of gases links diffusion to mobility through the
Einstein relationDe /me5kT/e. For anode-directed stream-
ers, the ion current can be neglected because it is more than
two orders of magnitude smaller than the electron one, so we
will take

ji50. ~3!

The electric field due to the charged particles is deter-
mined by Poisson’s equation

¹R"E5e~n i2ne!/«0 . ~4!

The coupling between the space charges and the electric field
makes the problem nonlinear.

The source termS accounts for the creation of free
charges by impact ionization. Initially, an electron liberated
by an outside agent, such as radiation, is accelerated in a
strong local field. The electron collides with a neutral mol-
ecule and ionizes it. The result is generation of new free
electrons and a positive ion. This ionization rate is given by
the product of the drift current of free electronsumeEneu and
the ionization coefficienta(uEu). The ionization coefficient is
related to the density of the neutral particles of the gas and
their effective ionization cross sections and represents the
inverse of the ionization mean free path. The calculation
from first principles of this coefficient is not easy. Townsend
gave a phenomenological approximation4 by treating it as a
process activated by drift energy gained from the fieldeluEu
~l is the total scattering mean free path!, with activation
energyD. These considerations lead to a formula analogous
to that of Arrhenius for thermally activated processes

a~ uEu!5

C

l
expS 2D

eluEu D5a0 expS 2E0

uEu D , ~5!

whereC is a dimensionless constant andE05D/el has di-
mensions of electric field. So the source term is

S5umeEneua0 exp~2E0 /uEu!. ~6!

In the source term~6!, the ionization due to the photons
created by recombination or scattering events is neglected.
This neglect is justified if the cross section of the photoion-
ization process is much smaller than that due to electrons.
Photoionization can be taken into account, but the dynamical
equations would become nonlocal. In attaching gases like
oxygen, a third kind of charged species needs to be taken
into account, namely, negative ions formed by a neutral mol-
ecule catching a free electron.13

Note that our balance equations,~1a! and ~1b!, are deter-
ministic, and stochastic effects are not included in the model.

We need to specify the appropriate boundary and initial
conditions. We ignore the details of the plasma initiation
event~for example, triggering by radiation from an external
source!, and assume that att50 a small well-localized ion-
ization seed is present. We make this assumption clearer in
the following. Boundary conditions will be discussed in
Sec. III.

To identify the physical scales and the intrinsic parameters
of the model, it is convenient to reduce the equations to
dimensionless form. The natural units are given by the ion-
ization lengthR05a0

21, the characteristic impact ionization
field E0 , and the electron mobilityme , which leads to the
velocity scalev05meE0 , and the time scalet05R0 /v0 . The
values for these quantities for nitrogen at normal conditions
are a0

21'2.3 mm, E0'200 kV/m, andme'380 cm2/V s.
We introduce the dimensionless variables12 r5R/R0 , t
5t/t0 , the dimensionless fieldE5E/E0 , the dimensionless
electron and ion particle densitiess5ne /n0 and r5n i /n0

with n05«0E0 /(eR0), and the dimensionless diffusion con-
stantD5De /(R0v0).

In terms of dimensionless variables, the model equations
become

] tre2¹"j5re f ~ uEu!, ~7!

] tr i5re f ~ uEu!, ~8!

r i2re5¹"E, ~9!

reE1D¹re5j. ~10!

The functionf (uEu) from Townsend’s approximation is

f ~ uEu!5uEua~ uEu!5uEuexp~21/uEu!. ~11!

III. SIMULATIONS

In confined geometries streamers usually have a nontrivial
finger-like shape. In general, two regions can be observed.
The interior of the streamer is an ionized region that is
quasineutral and equipotential. The outer region is filled with
the nonionized gas. These two regions are separated by a
very narrow region in which most of the ionization process is
taking place. In this same space there is a nonzero charge
density and consequently a very large electric field gradient.
This is one of the reasons why accurate simulations are
rather demanding. These features are strongly reminiscent of
what occurs in combustion fronts14 and viscous fingering.15

We discuss the numerical simulations of the streamer
model based on Eqs.~7!–~11!. We assume cylindrical sym-
metry. A planar cathode is located atz50 and a planar anode
is at z52000. The radial coordinate extends from the origin
up to r52000 to avoid lateral boundary effects on the field
configuration. The stationary potential difference between
the electrodes,DF51000, corresponds to a uniform back-
ground fieldE520.5 ez , whereez is the unit vector in thez
direction. For nitrogen under normal conditions, the separa-
tion of the electrodes corresponds to 5 mm and a potential
difference of 50 kV. We chooseD50.1, which is appropriate
for nitrogen, and as the initial condition an electrically neu-
tral Gaussian ionization seed on the cathode

re~r,z5,t50!5r i~r,z,t50!51026e2(z2
1r2)/1002

.
~12!

At the electrodes we take no flux of charges as boundary
conditions, so we use homogeneous Neumann conditions for
the charge densities.

The parameters of the simulation are essentially the same
as in the earlier simulations of Ref. 16 except that our back-
ground electric field is twice as large; the earlier work had 25
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kV applied over a gap of 5 mm. These parameters corre-
spond to a dimensionless background field of 0.25, and
branching was not observed.

We used uniform space–time grids with a spatial mesh of
100031000. The spatial discretization is based on local
mass balances. The diffusive fluxes are approximated in stan-
dard fashion with second-order accuracy. For the convective
fluxes a third-order upwind-biased formula was chosen to
reduce the numerical oscillations that are common with
second-order central fluxes. Such oscillations can be com-
pletely avoided, for example, by flux-limiting, but prelimi-
nary tests showed that the upwind-biased formula already
gives sufficient numerical monotonicity and is much faster.
Time stepping is based on an explicit linear two-step method,
where at each time step the Poisson equation is solved by the
FISHPACK routine. References for these procedures can be
found in Ref. 17.

In Fig. 1 we can see the results of some of the simulations
of the model. The evolution of a negative streamer toward
the anode is displayed, and the development of branching7 is

observed. Such branching phenomena have been observed in
some simulations with improved accuracy and different
boundary and initial conditions.18 There have been some dis-
cussions of the possibility of this branching being a numeri-
cal artifact.19 In the following sections we will see some
analytical evidence that this branching is due to an intrinsic
instability of the equations of the model.

IV. THE ONE-DIMENSIONAL STREAMER
EQUATIONS IN A COMOVING FRAME: THE
PLANAR FRONT

In Sec. III some numerical evidence of branching was pre-
sented. We now investigate the existence of branching by
analytical methods. We will start with the solution for a sta-
tionary planar front. The idea is to find a uniformly translat-
ing front and investigate how the transverse perturbation of
this solution will develop.

For planar fronts, we assume that charge varies only in the
z direction. Thus, Eqs.~7!–~10! become

Fig. 1. Evolution of spontaneous branching of anode directed streamers in a strong homogeneous background field at timest5300, 365, 420, and 450. The
model and initial and boundary conditions are discussed in the text. The planar cathode is located atz50 and the planar anode is atz52000 ~shown is 0
<z<1400). The radial coordinate extends from the origin up tor52000 ~shown is 0<r<600). The lines denote levels of equal electron densityre with
increments of 0.2 as indicated by the labels.
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] tre2]z~reE !2D]z
2re2re f ~ uEu!50, ~13a!

] tr i2re f ~ uEu!50, ~13b!

]zE2r i1re50. ~13c!

We will change our reference frame to a frame moving with
velocity v in the z direction (x,y ,j5z2vt). Equation~13!
becomes

] tre5v]jre1]j~reE !1D]j
2re1re f ~ uEu!, ~14a!

] tr i5v]jr i1re f ~ uEu!, ~14b!

]jE2r i1re50. ~14c!

A front moving uniformly with velocityv in the fixed frame
is stationary in this comoving frame,] tre5] tr i50. As a
result, the corresponding front profiles are solutions of ordi-
nary differential equations.

We need to determine the boundary conditions. The field
is completely screened in the ionized region and is approxi-
mately constant in space and time far ahead of the front.
Hence, we takeE as

E5H 0 ~z→2` !,

E`ez ~z→1` !,
~15!

where E` is a constant. These boundary conditions imply
that a time independent amount of charge is traveling within
the front, and no currents flow far behind the front in the
ionized regime.

For a nonvanishing far fieldE` , there is a continuous
family of uniformly moving front solutions,12,20 because the
front propagates into an unstable state.21 In particular, for
E`.0 there is a solution for any velocityv>0, and for
E`,0, there is a solution for anyv>uE`u. These solutions
are associated with an electron density profile that decays
asymptotically for largej as re(j)}e2lj with l>0. We
refer the interested reader to Ref. 21.

In practice, not all these uniformly propagating solutions
are observed, but only a specific one that it is called the
selected front.12,21 If initially the electron density strictly
vanishes beyond a certain pointj0 ~corresponding tol
5`), so that

re505r i for j.j0 at t50, ~16!

then the electron density will vanish for all timest.0 in a
coordinate system moving with velocityv5uE`u, and an
ionization front propagating with the electron drift velocity
uE`u develops. In the remainder of the paper, we will con-
sider this case.

In Fig. 2 we show the solution of Eq.~14! with the bound-
ary conditions, Eqs.~15! and ~16!. We have chosen the far
field E`521 and the diffusion coefficientD50.1. The nu-
merical calculations were done using a shooting method for
solving our two-point boundary value problem.22 This tech-
nique consists in choosing values for all of the dependent
variables at one boundary. We then integrate the ordinary
differential equations by initial value methods, arriving at the
other boundary. In general, we find discrepancies with the
desired boundary values there. Next we adjust the free pa-
rameters at the starting point to reduce the discrepancies at
the other boundary. The idea is to iterate this procedure until
we obtain the desired accuracy.

V. SHOCK FRONTS

We will simplify our model a bit more by taking the limit
D50 in the streamer equations. It reduces the order of the
equations and makes it possible to integrate them explicitly.
Then, in the comoving frame, using Eq.~14!, we have for a
stationary front

v]jre1]j~reE !1re f ~ uEu!50, ~17!

v]jr i1re f ~ uEu!50, ~18!

]jE2r i1re50. ~19!

We can solve this system of equations analytically. If we
subtract Eq.~18! from Eq.~17! and use Eq.~19! to eliminate
re2r i , we obtain

2v]jE1reE50. ~20!

Equation~20! is a consequence of charge conservation as we
can see by writing] tq1¹"jtot50, with the total charge de-
fined asq5r i2re . In our model each ionizing collision
produces the same number of negative and positive charges,
so we have¹"jtot50. The total current is given byjtot5]tE
1reE, and for a planar front with constant and time inde-
pendent fieldE5E`ez in the nonionized region wherere

50, the total currentjtot5jtot(t)ez vanishes. In the comoving
frame of Eqs.~14! and ~17!–~19!, we arrive at Eq.~20!.

The front equations reduce to two ordinary differential
equations forre andE,

]j@~v1E !re#52re f ~E !, f ~E !5uEua~E !, ~21!

v]j lnuEu5re , ~22!

which can be solved analytically to give

re@E#5

v

v1E
r i@E#, ~23!

r i@E#5E
uEu

uE`u f ~x !

x
dx5E

uEu

uE`u

a~x !dx, ~24!

j22j15E
E(j1)

E(j2) v1x

r i@x#

dx

x
. ~25!

Fig. 2. Electron densityre , ion densityr i , and electric fieldE for a nega-
tive ionization front moving withv5uE`u in the comoving frame. The far
field is E`521 andD50.1.
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Equations~23! and ~24! give re and r i as a function ofE,
and the spatial dependenceE5E(j) is obtained implicitly,
asj5j(E) in Eq. ~25!. In Fig. 3 the solutions~23!–~25! for
a shock front moving withv51 are shown. We have chosen
j150 andE(j1)5E`.

VI. STUDY OF INSTABILITIES: CORRUGATION OF
THE FRONT

The planar shock front may be unstable with respect to
periodic perturbations on the surface of discontinuity which
then form ‘‘ripples’’ or ‘‘corrugations’’ on the surface. In this
case, we are interested in obtaining the dispersion relation to
find which mode will grow faster and eventually determine
the characteristic shape of the streamer. Here we will derive
the perturbed equations and the boundary conditions.

Let the planar shock front that propagates into thez direc-
tion receive a small perturbation with an arbitrary depen-
dence on the transverse coordinatesx and y . Within linear
perturbation theory, the perturbation can be decomposed into
Fourier modes. Therefore we need the growth rates(k) of an
arbitrary transverse Fourier mode to predict the evolution of
an arbitrary perturbation. Because of isotropy within the
(x,y) plane, we can restrict the analysis to Fourier modes in
the x direction, and we consider linear perturbations
}exp(st1ikx). This notation anticipates the exponential
growth of such modes. A perturbation also will lead to a
perturbation of the position of the ionization shock front.
Hence, we introduce the variablez5j2e exp(ikx1st) and
the ansatz

re~x,z,t !5re0~z !1ere1~z !e ikx1st, ~26a!

r i~x,z,t !5r i0~z !1er i1~z !e ikx1st, ~26b!

f~x,z,t !5f0~z !1ef1~z !e ikx1st, ~26c!

wherere0 , r i0 , andf0 are the electron density, ion density,
and electric potential of the planar ionization shock front
obtained in Sec. V. Note, however, that these planar solutions
are shifted to the position of the perturbed front. The substi-
tution of Eq.~26! into Eq.~14! ~with D50) gives to leading
order in the small parametere:

~v1E0!]zre15~s12re02r i02 f !re12re0r i1

1~]zre02re0f 8!]zf12s]zre0 , ~27a!

v]zr i152 f re11sr i12re0f 8]zf12s]zr i0 , ~27b!

~]z
2
2k2!f15re12r i11k2E0 . ~27c!

In Eq. ~27! we denotef 5 f (E0), f 85] uEu f (uEu)uE0
, andE0

52]zf0(z) as the electric field of the uniformly translating
front. In Eq.~27c!, the termk2f1 arises as a consequence of
the dependence of the electric potential onx. Equation~27!
can be written in matrix form as

]zS re1

r i1

c1

f1

D 5Ms,k"S re1

r i1

c1

f1

D 2S s]zre0 /~v1E !

s]zr i0 /v
2Ek2

0
D , ~28!

where

Ms,k5S s12re02 f 2r i0

v1E

2re0

v1E

]zre02re0f 8

v1E
0

2 f

v

s

v

2re0f 8

v

0

1 21 0 k2

0 0 1 0

D .

~29!

Note we have introduced an auxiliary fieldc15]zf1 , which
is the positive derivative of the electric field to ordere.

Now that we have obtained the first-order perturbation
equations, we can discuss the boundary conditions. First we
consider the boundary conditions atz50. There are two
types of boundary conditions, one arising from the bounded-
ness of densities to the left of the shock front atz→02, and
the other arising from the continuity of fields across the po-
sition z50 of the shock front. From Eq.~17! we find that
(v1E)]zre is finite for all z, also forz→02 and for z50,
because (v1E)]zre5re(re2r i2 f ) is finite. The same is
true for re0 . In particular,*

2l
l dz(v1E)]zre0→0 as l→0,

and (v1E)]zre0→0 as z→02. Therefore we impose the
same conditions forre1 , namely

lim
l→0

E
2l

l

dz~v1E !]zre150, ~30!

lim
z→02

~v1E !]zre150. ~31!

We will now make use of the continuity conditions. We
match thez,0 solution to thez.0 solution. In front of the
shock there are no sources, and thus we have to solve¹2f
50 for z.0 and¹f52E`ẑ5v ẑ when z→`. The solu-
tion to first order ine has the form

re50, ~32!

r i50 for z.0, ~33!

f5a1vz1e~v1be2kz!e ikx1st, ~34!

with the undetermined integration constantsa andb.
Now r i and ¹f have to be continuous across the shock

front; ¹f is continuous because the charge densityr i2re is

Fig. 3. The electron densityre , ion densityr i , and electric fieldE for a
negative ionization shock front moving withv5uE`u in the comoving
frame. The far field isE`521.
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finite everywhere. From Eq.~18! r i is continuous, andre

and uEu are bounded for allz. From the continuity ofr i , we
have

lim
z→0

@r i~x,z1,t !2r i~x,z2,t !#50, ~35!

which implies that

r i1~0!50, ~36!

where we have used Eqs.~32! and~26! for the right and left
limits.

The continuity of the electric field to first order ine im-
plies that

lim
z→0

@]zf~x,z,t !uz12]zf~x,z,t !uz2#50, ~37a!

lim
z→0

@]xf~x,z,t !uz12]xf~x,z,t !uz2#50. ~37b!

If we use Eqs.~32! and~26! again, these conditions become

c1~0!52kb, f1~0!5v1b. ~38!

If we impose the continuity of the potential, we obtaina
5f0(0) andf1(0)5v1b ~which is the same condition ob-
tained from the continuity of the electric field!. Finally, from
Eqs.~30! and ~31!, and f 5re0 whenz→0, we have

c1~0!5s, re1~0!5

s f f 8

s1 f
. ~39!

We collect the results~35!, ~38!, and ~39! to obtain in the
limit of z↑0

S re1

r i1

c1

f1

D ——→

z↑0 S s f 8~v !/~11s/ f ~v !!

0
s

~vk2s !/k
D . ~40!

The other boundary conditions atz52` are that the total
charge equals zero and the electric field vanishes. These con-
ditions can be expressed as

S re1

r i1

c1

f1

D ——→

z↓2` S re1̄

re1̄

0
f1

2

D , ~41!

wherere1̄ andf1
2 are constants.

VII. DISPERSION CURVE

In Sec. VI we formulated an eigenvalue problem. Givenk,
we want to finds(k) such that there is a solution for the
transverse perturbation equations~28! fulfilling the boundary
conditions, Eqs.~40! and ~41!. In general, an analytic treat-
ment for any value ofk is not possible, and we have to resort
to numerical calculations.23 However, in the limits of small
and large wave number, the equations simplify, and we can
obtain the asymptotic behavior of the dispersion relation
s(k).

We start with the smallk-limit. If Eqs. ~28! and ~29! are
evaluated only to first order ink, f1 decouples and we ob-
tain

]zS re1

r i1

c1

D 5Ns,k"S re1

r i1

c1

D 2S ]zre /~v1E !

]zr i /v
0

D 1O~k2!,

~42!

where

Ns,k5S s12re2 f 2r i

v1E

2re

v1E

]zre2re f 8

v1E

2 f

v

s

v

2re f 8

v

1 21 0

D 1O~k2!

~43!

is the truncated matrixMs,k ~29!. The fourth decoupled equa-
tion is

]zf15c1 . ~44!

The boundary condition~40! is

S re1

r i1

c1

D ——→

z↑0 S f 8/~11s/ f !

0
1

D 1O~k2!, ~45!

and

f1~0!5

vk2s

sk
5

v

s
2

1

k
. ~46!

Equations~44! and ~46! give a condition onc1 :

vk2s

sk
5E

2`

0

c1~z !dz. ~47!

Consider now the limits! f (v). Then Eqs.~42! and ~45!
become identical up to orders/ f (v) to the perturbed equa-
tions obtained from an infinitesimal change ofE` . If we
compare two uniformly translating fronts with infinitesimally
different field E` at identical positions, their linearized dif-
ference solves the same equations. In this case,c1 is inde-
pendent ofs andk. But then Eq.~47! implies that

s5vk1O~k2! for k!a~v !. ~48!

Equation~48! has an immediate physical interpretation: 1/k
is the largest length scale involved. It is much larger than the
thickness of the screening charge layer. Therefore the charge
layer can be contracted to ad-function contribution along an
interface line. Such a screening charged interface has an in-
stability ats5vk.

In the opposite limit ofk sufficiently large, we also can
find a relation for the dispersion. We make the assumption
that the ion and electron densities remain bounded and use
Eq. ~28! to write the equations forc1 andf1 as

]zc1.k2~f11E !, ~49a!

]zf15c1 . ~49b!

On the short length scale, 1/k, the unperturbed electric
field for z,0 can be approximated by making an asymptotic
expansion of Eqs.~23!–~25!:23

E.2v2 f ~v !z, ~50!

If we substitute Eq.~50! into Eq. ~49a!, we obtain

]z
2f15k2~f12v2 f ~v !z !. ~51!
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The boundary condition~40! fixes f1(0)5(vk2s)/k and
c1(0)5]zf15s. The unique solution of Eq.~51! with these
initial conditions is

f1~z !5v1 f ~v !z2

f ~v !

2k
ekz

1

f ~v !22s

2k
e2kz ~52!

for z,0. The modee2kz would increase rapidly toward de-
creasingz, create diverging electric fields in the ionized re-
gion, and cannot be balanced by any other terms in the equa-
tion. Therefore it has to be absent. The requirement that its
coefficient (f (v)22s)/2k vanishes fixes the dispersion rela-
tion

s~k !5

f ~v !

2
1O~k21! for k@a~v !. ~53!

Again there is a simple physical interpretation of this
growth rate. The electric field can be approximated in lead-
ing order by

E~x,z,t !.H 2~v1 f ~v !z ! ~z,0!ez ,

2vez ~z.0!.
~54!

When the discontinuity propagates with the local fieldv

52E, a perturbation in the fieldE52 ẑ(v1]zEz) will
grow with the rate]zE. The averaged slope of the field for
z.0 andz,0 is ]zE5 f (v)/2, and this slope is precisely
the growth rate in Eq.~53! determined previously.

We have studied the~in!stability of planar negative ioniza-
tion fronts against linear perturbations and have found

s~k !5H uE`uk ~k!a~ uE`u!!,

uE`ua~ uE`u!/2 ~k@a~ uE`u!!.
~55!

Thus, the planar front becomes unstable with a linear growth
rate s(k) for small k to a saturation valueuE`ua(uE`u)/2.
This instability gives us a mechanism for branching. For the
case of a curved front, if the radius of curvature increases,
the planar approximation for the tip is reasonable and allows
a qualitative understanding of the branching phenomena.

VIII. SUMMARY AND OUTLOOK

In this paper a fully deterministic model for streamers is
suitable for noninteracting gases such as nitrogen without
photoionization was presented. We have proposed that an
anode directed front can branch spontaneously according to
this model due to Laplacian interfacial instability. We
showed some numerical evidence of this phenomena. We
have studied the stability of a planar front and how a trans-
verse perturbation would grow. The dispersion curve for the
planar case gives us a qualitative picture of the mechanism
acting on a curved front. We also have calculated the
asymptotic behavior of the dispersion curve.

However, some questions remain. From the dispersion
curve an instability will grow for a sufficiently short wave-
length. We expect that a regularization mechanism should
come into play. The regularization mechanism that selects a
particular mode could be the electric screening due to

curvature.23 Another possibility is diffusion phenomena,
which we did not consider in the shock front case. Diffusion
was neglected to prevent mathematical challenges, but
sooner or later we have to face this challenge.

The physics of low temperature plasmas is an area where
many fundamental questions still remain unanswered, and
where experiments have been ahead of theory. When I hear
some pessimistic voices for the future of physics, I think
there is much room at the bottom to enjoy the show.

a!Electronic mail: m.arrayas@escet.urjc.es
1‘‘Saint Elmo’s Fire.’’ Encyclopaedia Britannica, ^http://
www.britannica.com&.

2For a tutorial on display technologies, see^http://www.atip.org/fpd/src/
tutorial/fpd.html&.

3Electrical Discharges for Environmental Purposes: Fundamentals and Ap-
plications, edited by E. M. van Veldhuizen~NOVA Science, New York,
1999!.

4Y. P. Raizer,Gas Discharge Physics ~Springer, Berlin, 1991!.
5V. P. Pasko, M. A. Stanley, J. D. Mathews, U. S. Inan, and T. G. Wood,
‘‘Electrical discharge from a thundercloud top to the lower ionosphere,’’
Nature~London! 416, 152–154~2002!.

6There is a wonderful web site with pictures of sprites, blue jets, and light-
ning: ^http://www.sky-fire.tv&.

7H. Raether, ‘‘Die Entwicklung der Elektronenlawine in den Funkenkanal,’’
Z. Phys.112, 464–489~1939!.

8L. Niemeyer, L. Pietronero, and H. J. Wiesmann, ‘‘Fractal dimension of
dielectric breakdown,’’ Phys. Rev. Lett.52, 1033–1036~1984!.

9M. Arrayás, U. Ebert, and W. Hundsdorfer, ‘‘Spontaneous branching of
anode-directed streamers between planar electrodes,’’ Phys. Rev. Lett.88,
174502-1–174502-4~2002!.

10W. van Saarloos, ‘‘Three basic issues concerning interface dynamics in
nonequilibrium pattern formation,’’ Phys. Rep.301, 9–43~1998!.

11When an electron collides with a neutral gas atom or molecule, it may
become attached, forming a negative ion. This process depends on the
energy of the electron and the nature of the gas.

12U. Ebert, W. van Saarloos, and C. Caroli, ‘‘Streamer propagation as a
pattern formation problem: Planar fronts,’’ Phys. Rev. Lett.77, 4178–4181
~1996! and ‘‘Propagation and structure of planar streamer fronts,’’ Phys.
Rev. E55, 1530–1549~1997!.

13S. K. Dhali and A. P. Pal, ‘‘Numerical simulation of streamers in SF6 , ’’ J.
Appl. Phys.63, 1355–1362~1988!.

14F. A. Williams, Combustion Theory ~Benjamin/Cummings, Menlo Park,
1985!.

15P. Pelce´, Dynamics of Curved Fronts ~Academic, Boston, 1988!.
16P. A. Vitello, B. M. Penetrante, and J. N. Bardsley, ‘‘Simulation of

negative-streamer dynamics in nitrogen,’’ Phys. Rev. E49, 5574–5598
~1994!.

17P. Wesseling,Principles of Computational Fluid Dynamics, Springer Se-
ries in Computational Mathematics~Springer, Berlin, 2001!.

18A. Rocco, U. Ebert, and W. Hundsdorfer, ‘‘Branching of negative stream-
ers in free flight,’’ Phys. Rev. E66, 035120-1–035120-4~2002!.

19See reply letter by U. Ebert and W. Hundsdorfer, Phys. Rev. Lett.89,
229402~2002! on the comment by A. A. Kulikovsky,ibid. 89, 229401
~2002!.

20A. N. Lagarkov and I. M. Rutkevich,Ionization Waves in Electrical Break-
down in Gases ~Springer, New York, 1994!.

21U. Ebert and W. van Saarloos, ‘‘Front propagation into unstable states:
Universal algebraic convergence towards uniformly translating pulled
fronts,’’ Physica D146, 1–99~2000!.

22The book is freely available at^http://www.nr.com&.
23M. Arrayás and U. Ebert, ‘‘Stability of negative ionization fronts: Regu-

larization by electric screening?,’’ Phys. Rev. E69, 036214-1–036214-8
~2002!.

1289 1289Am. J. Phys., Vol. 72, No. 10, October 2004 Manuel Arrayás


