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Physical principles of electrical breakdown are reviewed in this article. The phenomena of

streamer formation and spontaneous branching are studied in terms of a fluid description

based on kinetic theory. Particular attention is paid to a minimal model which is suitable

for non-attaching gases. The evidence that anode directed fronts can branch due to a

Laplacian instability is shown. Finally an electric shielding factor is introduced which

allows us to extend previous results to curved geometries.

1. Introduction

Benjamin Franklin suspected that lightning was an

electrical current in nature, and he wanted to see if he

was right. One way to test his idea would be to see if the

lightning would pass through metal. He decided to use a

metal key and looked around for a way to get the key up

near the lightning. He used a child’s toy, a kite, to prove

that lightning is really a stream of electrified air, known

today as plasma. His famous stormy kite flight in June of

1752 led him to develop many of the terms that we still use

today when we talk about electricity: battery, conductor,

condenser, charge, discharge, uncharged, negative, minus,

plus, electric shock and electrician.

A cubic centimetre of air contains roughly 2.76 1019

molecules of oxygen (O2), nitrogen (N2), water vapour

(H2O) and some other gases. The charged particles are

bound by powerful electric forces to form electrically neutral

atoms and molecules, and as a result the air is an excellent

insulator. If we apply an electric field to a volume filled with

neutral particles, electric current will not flow through the

volume, because there are no charged particles present.

However, if a strong electric field is applied to matter of low

conductivity and some electrons or ions are created, then the

few mobile charges can generate an avalanche of more

charges by impact ionization. A low temperature plasma is

created, resulting in an electric discharge. The change in the

properties of a dielectric that causes it to become conductive

is known as electrical breakdown. Breakdown is essentially a

threshold process. No changes in the state of the medium are

noticeable for some time while the electric field across a

discharge gap is gradually increased. Suddenly, at a certain

value of the field, instruments detect a current and even a

flash can be observed.

Discharges are non-equilibrium processes that occur in

initially non-ionized matter exposed to a strong electric

field. Understanding the basic mechanisms of an electric

discharge is a challenging problem involving ideas from

non-equilibrium thermodynamics, atomic physics, electro-

magnetism and pattern formation. Discharges can assume

many different modes of appearance depending on the

spatial and temporal characteristics of the electric field and

on the ionization and charge transport properties of the

medium. Phenomenologically, discharges can be classified

into stationary ones, such as arc, glow or dark discharges,

and transient ones, such as sparks and leaders [1]. The

distinctions among the various discharge phenomena seem

to vary among authors.

1.1 Townsend mechanism

In 1889 F. Paschen found empirically that the breakdown

characteristic of a gap is a function of the product of the

gas pressure and the gap length. Paschen’s law is usually

written as V= f(pd), where V is the voltage across the gap,

p is the pressure and d is the gap distance.

Townsend managed to explain this observation. He

studied the variation of the electrical current between two

*Corresponding author. Email: manuel.arrayas@urjc.es

Contemporary Physics, Vol. 46, No. 4, July–August 2005, 265 – 276

Contemporary Physics
ISSN 0010-7514 print/ISSN 1366-5812 online ª 2005 Taylor & Francis Group Ltd

http://www.tandf.co.uk/journals
DOI: 10.1080/00107510500146733



parallel plate electrodes filled with gas. The electrodes’

separation and gas pressure were typically of one centi-

metre and one atmosphere. A high voltage was applied

between the electrodes and some initial electrons were

produced by illumination of the cathode with a UV source.

The current in the circuit was measured for varying

voltages. First there was a proportional increase in the

current as the result of photoelectrons drifting towards the

anode. Then, there was a range of applied voltages in which

the current was constant, as the field was strong enough to

enable all the liberated electrons to reach the anode, but too

weak to cause any multiplication of electrons by ionization

of the gas. Finally, for higher voltages, there was

exponential growth. Townsend related this increase of the

current to ionization of the gas by electron collisions.

Defining N as the number of electrons at distance z from

the cathode, after one mean free path for ionization li, an
electron produces on average one electron – ion pair. So the

increase in the number of electrons that can be expected in

any slab of gas of thickness dz is

dN ¼ Nadz ; ð1Þ

where the inverse of the ionization mean free path a=1/li
is called the ionization coefficient. Integrating equation (1),

yields N=N0exp(az), where N0 is the number of electrons

at the cathode. As a result, the electron and positive ion

populations grow exponentially with distance. This process

is called an electron avalanche.

The ionization coefficient a is related to the density of the

neutral particles of thegas and their effective ionizationcross-

sections.Thecalculationfromfirstprinciplesofthiscoefficient

is not easy. Townsend gave a phenomenological approxima-

tion by treating ionization as a process activated by drift

energygained fromthefieldelj j (e is theabsolutevalueof the
electron charge,l is the total scatteringmean freepathand j j
is the modulus of the local electric field ), with activation

energyD.Takenall together, this leadstoaformulaanalogous

to that of Arrhenius for thermally activated processes

aðj jÞ¼ C

l
exp

�D

elj j

 !
¼ a0 exp

�E0

j j

 !
; ð2Þ

where c is a dimensionless constant and E0=D/el has the

dimensions of the electric field. Since the mean free path is

inversely proportional to pressure, the ionization coefficient

can also be written as

aðj jÞ¼ Ap exp
�Bp

j j

 !
: ð3Þ

where the constants A and B are properties of the gas.

In order to reach a self-maintaining discharge, new

electrons should be generated in sufficient number by

secondary processes to replace the externally imposed

ionization. Townsend assumed that acceleration of the

positive ions in the electric field leads, in principle, to

secondary emission of electrons from the negative elec-

trode, when they reach it, at a rate of g electrons per

incident ion. The parameter g depends on the cathode

material. According to (1), N0 initial electrons will produce

N0 exp (az)adz at position z, so across a gap of width d

there will be created N0 [exp (ad) – 1] ions. The number of

electrons that those ions create at the cathode should be

equal to the number of electrons supplied by the UV

source, so

gN0½exp ðadÞ � 1� ¼ N0 : ð4Þ

Combining (3) and (4), Townsend was able to obtain

Paschen’s law [1].

1.2 Streamer mechanism

Researchers found by the early 1930s that the Townsend

mechanism was not able to predict the breakdown

processes at atmospheric pressure and at distances over

1 cm. In order to explain the breakdown at high values of

the product pd (p pressure and d distance) the streamer

mechanism was developed [2,3]. Experimentally the time to

breakdown is about 10 – 100 ns. This time is much shorter

than the time it takes for the ions to move back and create

secondary electrons. The breakdown volutage is indepen-

dent of the cathode material. Thus the parameter g is no

longer influential. The discharge channels are sharp and

narrow. This is different to the observed Townsend

discharges, which are glowing, diffuse and cold. The new

concept introduced to explain these facts was the effect of

space charge. A streamer discharge was considered to be a

plasma channel that can propagate in a gas. The discharge

propagated by ionizing the medium in front of its charged

head owing to a strong field induced by the head itself.

A streamer is a sharp ionization wave that propagates

into a non-ionized gas, leaving a non-equilibrium plasma

behind. They have also been reported in early stages of

atmospheric discharges [4] such as sparks or sprite

discharges [5]. Streamers can split into branches sponta-

neously, but precisely how this branching is determined by

the underlying physics remains an open question.

To model the initial stage of dielectric breakdown, when

a gas suddenly switches from being an insulating dielectric

to a conducting gas, Raether [3] characterized rare long-

range photoionization events as stochastic processes

enhancing ionization avalanches. The idea is that photons

created by atoms excited in previous collisions initiate

secondary avalanches. In this scenario, avalanches are
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randomly distributed at different points near the streamer

head. Some phenomenological stochastic models for di-

electric breakdown have been proposed since then [6].

Branching would occur due to randomly distributed

ionization avalanches.

In this paper we will use classical kinetics theory to

deduce a fluid description of the phenomena (if the gas

density is low, it could be argued that the fluid model is no

longer valid and a statistical description in terms of

molecular dynamics would be more suitable). Then we will

simplify the model neglecting some processes like photo-

ionization, attachment and recombination and considering

only impact ionization. We will show some numerical

simulations where characteristic features of streamer

propagation can be observed like finger shape and

branching. We will proceed with the analysis of anode

directed planar fronts and the stability of shock fronts. The

dispersion curve is obtained and finally, we will present a

new formulation in terms of a shielding factor which allows

us to consider curved geometries.

2. Balance equations

We consider a fluid description of a low-ionized plasma

based on kinetic theory [7]. Since inelastic collisions

between particles play an important role in low-tempera-

ture plasmas, significant deviations from thermal

equilibrium are usually present in such media, which

justifies the need for using kinetic theory. In this frame-

work, balance equations for electrons, positive and negative

ions in the gas can be derived from the Boltzmann kinetic

equation.

Let us take feðR;V; tÞ to be the distribution function of

the free electrons in a gas, where R is the position vector, V

is the velocity and t is time. The distribution function is

defined so that fe(R,V,t)d
3Rd3V is the number of electrons

which, at the instant t, have positions inside a volume

element d3R at R and have velocities lying within the

volume d3V at V. The Boltzmann equation is a first-order

equation of motion for the distribution function and can be

written as

@fe
@t

þ V � rR fe þ
F

m
� rV fe ¼

@fe
@t

� �
coll

; ð5Þ

where rR is the gradient in configuration space, rV is the

gradient in velocity space, F is the external force acting on

the particles and (@fe/@t)coll is the time rate of change of the

distribution function due to collisions. The left-hand side in

(5) is the total derivative dfe/dt and can be interpreted as

the rate of change as seen in a frame moving with the

particles in the six-dimensional (R,V) space. Thus the

Boltzmann equation simply says that dfe/dt is zero unless

there are collisions.

The balance equation for electrons is obtained by

integrating equation (5) in velocity space (i.e. the lowest

moment of the Boltzmann equation),

Z
@fe
@t

d3Vþ
Z

V � rRfe d
3Vþ

Z
F

m
� rVfe d

3V

¼ @fe
@t

� �
coll

d3V :

ð6Þ

The electron density Ne is defined as the integral of the

distribution function over velocity

NeðR; tÞ ¼ feðR;V; tÞ d3V : ð7Þ

With this definition, we can write the balance equation

for electrons as

@Ne

@t
þrR � NeUeð Þ ¼ Se ; ð8Þ

where UeðR; tÞ is the average (fluid) velocity of electrons

and Se is the source term, i.e. the net creation rate of

electrons per unit volume as a result of collisions. It is

convenient to define the electron current density as

JeðR; tÞ ¼ NeðR; tÞUeðR; tÞ so that the balance equation

can also be written as

@Ne

@t
þrR � Je ¼ Se : ð9Þ

The same procedure can be followed, in principle, for

positive (Np) and negative (Nn) ion densities to give

@Np

@t
þrR � Jp ¼ Sp ; ð10Þ

@Nn

@t
þrR � Jn ¼ Sn ; ð11Þ

where Jp,n are the current densities of positive and negative

ions, respectively, and Sp,n are source terms. Conservation

of charge has to be imposed in all processes, so that the

condition Sp=Se+Sn holds for the source terms.

Some physical approximations can now be introduced in

order to simplify the balance equations (9), (10) and (11).

The first one is that the electron current Je is approximated

as the sum of drift (electric force) and diffusion terms

Je ¼ �me Ne �DerRNe ; ð12Þ

where is the total electric field (the sum of the external

electric field applied to initiate the propagation of an

ionization wave and the electric field created by the local

point charges) and me and De are the mobility and diffusion
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coefficient of the electrons. Note that, as the initial charge

density is low and there is no applied magnetic field, the

magnetic effects in equation (12) are neglected. This cannot

be done in cases where the medium is completely ionized

and/or an external magnetic field is applied (tokamaks,

plasma distributions in stars, etc.) [8]. About the diffusion

coefficient, in the case of equilibrium, the kinetic theory of

gases links diffusion to mobility through the Einstein

relation De/me= kT/e. With respect to positive and negative

ions, on time scales of interest for the case of anode-

directed streamers, the ion currents can be neglected

because they are more than two orders of magnitude

smaller than the electron one, so we will take Jp ¼ Jn ¼ 0:

Consider now the processes that give rise to the source

terms Se,p,n.

(i) The first of these processes is the creation of free

electrons by impact ionization: an electron is accel-

erated in a strong local field, collides with a neutral

molecule and ionizes it. The result is the generation of

new free electrons and a positive ion. The ionization

rate is given by

Si
e ¼ Si

p ¼ niNe ; ð13Þ

where the ion production rate vi depends on the local

electric field, the density of the neutral particles of the

gas and their effective ionization cross-sections.

(ii) The second possible process, which appears in gases

like oxygen, is attachment: when an electron collides

with a neutral gas atom or molecule, it may become

attached, forming a negative ion. This process

depends on the energy of the electron and the nature

of the gas [9]. The attachment rate can be written as

Sa
n ¼ �Sa

e ¼ naNe ; ð14Þ

where va is the attachment rate coefficient. Note that

the creation of negative ions due to these processes

reduces the number of free electrons, so Sa
e is

negative.

(iii) There are also two possible kinds of recombination

processes: a free electron with a positive ion and a

negative ion with a positive ion. The recombination

rate is

Sep
e ¼ Sep

p ¼ �nepNeNp ; ð15Þ

for electron – positive ion recombination, and

Snp
p ¼ Snp

n ¼ �nnpNnNp ; ð16Þ

for positive ion – negative ion recombination, vep and

vnp being the recombination coefficients respectively.

(iv) Finally, we can include photoionization: a photon

created by recombination or a scattering process can

interact with a neutral atom or molecule, giving rise

to a free electron and a positive ion. Models for the

creation rate of electron – positive ion pairs due to

photoionization are non-local [7]. This rate will be

here denoted by

Sph
e ¼ Sph

p ¼ Sph : ð17Þ

Liu and Pasko [10] have studied the effects of

photoionization on the evolution of streamers in

sprites in air. Sprites are massive but weak luminous

flashes that appear above a thunderstorm and

coincide with cloud-to-ground or intracloud lightning

strokes. In Liu and Pasko’s work, optical emissions

from N2 and Nþ
2 molecules can ionize O2 molecules.

The photoionization rate is written as the following

non-local source term:

SphðrÞ ¼
Z

jðjr� r1jÞ
4jr� r1j2

d3r1 ; ð18Þ

where the kernel f(r) is given by

jðrÞ ¼ pq
pþ pq

xn�NegðrÞ : ð19Þ

In this expression, pq is the quenching pressure of the

single states of N2, p is the gas pressure, x is the

average photoionization efficiency in the interval of

radiation frequencies relevant to the problem, v* is

the effective excitation coefficient for the N2 state

transitions emitting the ionization radiation, and

gðrÞ ¼ exp ð�wminpO2
rÞ � exp ð�wmaxpO2

rÞ
r ln ðwmax=wminÞ

; ð20Þ

in which wmin and wmax are, respectively, the minimum

and maximum absorption cross-sections of O2 in the

relevant radiation frequency interval.

Taking into account expression (12) for the current

density, and equations (13), (14), (15), (16) and (17) for the

source terms, we obtain a deterministic model for the

evolution of the streamer discharge,

@Ne

@t
¼ rR � me Ne þDerRNe

� 	
þ niNe

� naNe � nepNeNp þ Sph ;

ð21Þ

@Np

@t
¼ niNe � nepNeNp � nnpNnNp þ Sph ; ð22Þ

E
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@Nn

@t
¼ naNe � nnpNnNp : ð23Þ

In order for the model to be complete, it is necessary to give

expressions for the source coefficients v, the electron

mobility me, the diffusion coefficient De and the photo-

ionization source term Sph.

Finally, we have to impose equations for the evolution of

the electric field . This evolution of the electric field is

given by Gauss law,

rR � ¼ e

E0
Np �Nn �Ne

� �
; ð24Þ

where e is the absolute value of the electron charge, e0 is the
permittivity of the gas, and we are assuming that the

absolute value of the charge of positive and negative ions is

e. Note that the coupling between the space charges and the

electric field in the model makes the problem nonlinear.

The model given by (18), (21), (22) and (23), together

with (24), has been studied numerically in the literature

[10]. There are other works where the electrical current due

to ions is taken into account although not photoionization

[11]. In systems where there is initial background ioniza-

tion, the mobility of positive ions should also be

considered. Semiconductors provide one such system and

the same kind of model has been applied to them [12].

3. The minimal streamer model

For simulating the dynamical streamer development of

streamers out of a macroscopic initial ionization seed, in a

non-attaching gas like argon or nitrogen, we can slightly

simplify the model [13]. Attachment and recombination

processes can be neglected (va= vep= vnp=0) as these

coefficients are much smaller than the ionization coefficient

vi in experimental data for non-attaching gases. As a

consequence, the negative ion density Nn can be considered

to be constant. With these considerations, the balance

equations turn out as

@Ne

@t
¼ rR � me Ne þDerRNe

� 	
þ niNe þ Sph ; ð25Þ

@Np

@t
¼ niNe þ Sph : ð26Þ

For the ionization coefficient vi we take the phenomen-

ological approximation (2) given by Townsend and

explained in section 1.1. This leads to a formula

ni ¼ mej ja0 exp
�E0

j j

 !
; ð27Þ

where me is the electron mobility, a0 is the inverse of

ionization length and E0 is the characteristic impact

ionization electric field. Note also that mej j is the drift

velocity of electrons. It is usually considered that photo-

ioniozation is not relevant to non-attaching gases so we can

take Sph=0, although this is a point which deserves further

investigation.

The Townsend approximation provides physical scales

and intrinsic parameters of the model as long as only

impact ionization is present in the gas. It is then convenient

to reduce the equations to dimensionless form. The natural

units are given by the ionization length R0 ¼ a�1
0 , the

characteristic impact ionization field E0 and the electron

mobility me, which lead to the velocity scale U0= meE0 and

the time scale t0=R0/U0. The values for these quantities

for nitrogen at normal conditions are a�1
0 � 2:3 mm,

E0&200 kV m–1, and me&380 cm2 V71s71. We introduce

the dimensionless variables r ¼ R/R0, t= t/t0, the dimen-

sionless field E ¼ /E0, the dimensionless electron and

positive ion particle densities re=Ne/N0 and rp=Np/N0

with N0= e0E0/(eR0), and the dimensionless diffusion

constant D=De/(R0U0).

In terms of dimensionless variables, the model equations

become

@re
@t

¼ r � jþ refðjEjÞ ; ð28Þ

@rp
@t

¼ refðjEjÞ ; ð29Þ

rp � re ¼ r � E ; ð30Þ

j ¼ reEþD rre ; ð31Þ

fðjEjÞ ¼ jEj exp ð�1=jEjÞ ; ð32Þ

where r ¼ rr and j is the dimensionless electron current

density. The set of equations (28) – (32) is known as the

minimal streamer model for a non-attaching gas. In the rest

of this paper we will restrict ourselves to this model. Note

that we get a highly nonlinear set of partial differential

equations. For this reason, even this simplified model has

many interesting features for both mathematicians and

physicists. Some of these features appear in the numerical

simulations.

4. Simulations of the minimal model

4.1 The negative and positive fronts

We will describe a typical experimental situation to

investigate the breakdown. Let us consider two separated

parallel plates. The space between the plates is filled with a
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non-attaching gas such as nitrogen. A stationary electric

potential difference is applied to the plates. The positive

charged plate is called the anode and the negative one is the

cathode. An avalanche begins with a small number of seed

electrons that appear accidentally (for example due to

cosmic rays), or can be created irradiating the cathode or

the gas with UV light [1]. A heated resistor can also be used

to initiate the avalanche.

We can simulate this experiment with the minimal model

based on equations (28) – (32). This is what has been done

in figure 1. Cylindrical symmetry is assumed. The cathode

is located at z=0 and the anode is at z=2000, where z is

the vertical axis (we are using dimensionless coordinates).

The radial coordinate extends, on the horizontal axis, from

the origin at the centre of the cathode, up to r=2000. The

initial ionization seed is modelled by a narrow Gaussian

distribution centred at r= 0. The diffusion is taken as

D=0.1. All the details about the numerics and specific

parameters are discussed in [14].

The results in figure 1 correspond to a given instant of

time in the evolution of the streamer. We have plotted the

electron density, the positive ion density and the electric

potential in the spatial region of interest. Two regions can

be observed. The interior of the streamer has a non-trivial

finger-like shape, as we can see in the figure. It is an ionized

region that is quasi-neutral, where values of the electron

density and the positive charge density are almost equal.

Thus the inner region is equipotential. In the figure, the

value of the potential in this region is about 110 (in

dimensionless units). The outer region is filled with the non-

ionized gas.

Due to impact ionization, the initial seed starts growing.

If that were the only mechanism, the space charge

neutrality would remain unchanged. However, the elec-

trons have mobility in our model, so they start moving in

the direction opposite to the electric field towards the

anode. As the electrons drift while the ions stay put (at this

fast time scale we are neglecting the ion mobility in the

model as explained above), charge separation occurs. It

tends to suppress the electric field inside the ionization

region. When the charge separation grows in time, screen-

ing of the electric field is complete in the ionized region so

the ionization process stops there. Thus it can be seen in the

figure that a front is moving towards the anode leaving a

quasi-neutral plasma behind. We will refer to it as the

negative front. There is a very narrow region within which

most of the ionization process is taking place. In this

narrow layer there is a non-zero net charge density and

consequently a very large electric field. Note in the figure

how the equipotential lines get closer around r= 0 and

z=330, for example.

As all the physics is taking place in a very thin layer,

accurate simulations are rather demanding. These features

are strongly reminiscent of what occurs in combustion

fronts [15] and viscous fingering [16]. In combustion fronts,

the finger region is occupied by the combustion products.

This region is separated from the unburned region by a

front in which chemical reactions and heat and mass

transport occur. The finger solution of the combustion

problem [17] is analogous to a solution of a Saffman –

Taylor problem originally formulated to describe the

displacement of one fluid by another having a smaller

viscosity, in a porous medium or in a Hele – Shaw

configuration [18].

In the above discussion we have not considered the role

played by diffusion in the pictures. Without diffusion, the

negative front propagates with a velocity that is at least

the drift velocity of the electrons in the local electric field.

To explain the movement of the streamer in the same

direction as the electric field, however we need to consider

diffusion explicitly. The front propagating towards the

cathode will be called the positive front [13]. Its space

charge separation is, as before, due to the motion of

electrons when the ion – electron pair is created by an

ionization event. But this time, the electrons move

opposite to the diffusion current, and the propagation of

the positive front is only possible if electron diffusion

compensates the drift current. In the limit D?0, for a

positive front to move, the electron density gradient must

be extremely steep. So whereas for negative fronts,

diffusion is a small correction when D551, in the case

of positive fronts this limit is rather singular.

4.2 The branching of negative fronts

In figure 2 we can see more simulations of the model. In this

case the parameters are the same as in figure 1, except that

the background electric field is twice as large and the initial

seed of charge is placed at the cathode, so only the

evolution of the negative front towards the anode can be

seen. We have plotted a few electron density level curves at

two different instants of time. At t=365, the electron

density has the characteristic finger shape. The higher value

of the electron density is found at the tip of the streamer.

We observe that at time t=450, the streamer has

developed instabilities at the tip and these instabilities have

grown out into separate fingers. Because of the imposed

cylindrical geometry, the further evolution after branching

ceases to be physical.

The parameters of the simulation are essentially the same

as in the earlier simulations of [11]; in this reference, Vitello

et al. had 25 kV applied over a gap of 5 mm. These

parameters correspond to a dimensionless background field

of 0.25 and branching was not observed. However, in figure

2 the electric field has been increased to 0.5 and the

phenomena of branching appear [19]. There have been

some discussions of the possibility of this branching being a

numerical artefact [20]. Nevertheless such branching
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phenomena have been observed in other simulations with

improved accuracy and different boundary and initial

conditions [10,21]. Simulations show that branching is not

due to the proximity of the anode, since in a system with

twice the electrode separation, the anode at z=4000 and

with twice the potential difference—so with the same

background field—the streamer branches in about the

same way after about the same time and travel distance.

Moreover the phenomenon is not specific to the particular

initial condition. One observes that during the temporal

evolution prior to branching, both the curvature and the

thickness of the ionization front decrease. So the width of

the front becomes much smaller than its radius of

curvature.

It has been proposed the streamers can branch sponta-

neously due to a Laplacian interfacial instability [19]. The

conducting body has an approximately constant electric

potential, while in the non-ionized region due to the

absence of space charges, the potential satisfies a homo-

geneous Poisson equation. The boundary between the two

regions moves approximately with the drift velocity. In this

scenario, branching is similar to that happening in viscous

fingering phenomena [16]. The limit of ideally conducting

streamers in an electric field that becomes uniform far

ahead of the front was studied by Lozansky and Firsov

[22].

In the following sections, we will see some analytical

evidence that the streamer branching is due to an intrinsic

instability of the equations of the model. Even the simplest,

fully deterministic model without photoionization that we

are considering can exhibit this branching. Thus branching

does not occur due to randomly distributed ionization

avalanches created by photo-ionization events as in other

models [6].

Figure 1. Electron density re, positive charge density rp and electric potential. A planar cathode is located at z=0 and a

planar anode is at z=2000, z being the vertical axis. The radial coordinate extends, on the horizontal axis, from the origin up

to r=2000 to avoid lateral boundary effects on the field configuration. The picture corresponds to t=650 (note the use of

dimensionless quantities).
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5. The negative planar front analysis

5.1 Uniformly translating fronts

From section 4 we can argue that the relevant physics of

streamer propagation operates in a very narrow space close

to the fronts. Some numerical evidence of branching has

been presented. We now investigate the streamer dynamics

by analytical methods. The idea is to find a uniformly

translating front and to investigate how a transverse

perturbation of this front would develop.

We consider planar symmetry. We can then assume that

charge varies only in the z direction. So the electric field can

be written as E ¼ E ez where jEj is its modulus. A front

moving uniformly with velocity u would be seen as

stationary in a frame moving with the same velocity. In

this comoving frame, electron and ion densities will not

depend explicitly on time, so @t/re= @trp=0. We change

our laboratory reference frame to a comoving frame with

coordinates (x,y,x= z – ut). Equations (28) – (32) for a

uniformly translating front read

u@xre þ @xðreEÞ þD@2
xre þ refðjEjÞ ¼ 0 ; ð33Þ

u@xrp þ refðjEjÞ ¼ 0 ; ð34Þ

@xE� rp þ re ¼ 0 : ð35Þ

We need to determine the boundary conditions. The field is

completely screened in the ionized region and is approxi-

mately constant in space and time far ahead of the front.

Hence, we take E as

E ¼ 0 ðx ! �1Þ
E1 ðx ! þ1Þ ;

�
ð36Þ

where E? is a constant. These boundary conditions imply

that a time independent amount of charge is travelling

within the front and no currents flow far behind the front in

the ionized regime.

For a non-vanishing far field E?, there is a continuous

family of uniformly moving front solutions [13,23]. The

non-ionized region is unstable as the gas molecules tend to

be ionized by the Townsend mechanism, creating a stable

state. Thus the front propagates into an unstable state

leaving behind a stable ionized region [24]. For E?5 0

which is the case for the negative or anode directed front,

there is a solution of the equations (33) – (36) for any value

of the front velocity satisfying u5 jE?j. We point the

interested reader to [24].

In practice, not all these uniformly propagating solutions

are observed, but only a specific one selected by the initial

conditions of the discharge. Let us assume that initially the

electron density strictly vanishes beyond a certain point x0.
Then the electron density will vanish for all times t4 0 in a

Figure 2. Spontaneous branching of anode directed streamers in a strong homogeneous background field. The planar cathode

is located at z=0 and the planar anode is at z=2000. The radial coordinate extends from the origin up to r=2000. The

lines denote levels of equal electron density re with increments of 0.2 as indicated by the labels. The left picture corresponds to

t=365 and the right one to t=450. The tip splitting of the streamer can be observed at the right picture.

272 M. Arrayás and J. L. Trueba



coordinate system moving with velocity u= jE?j, and an

ionization front propagating with the electron drift velocity

jE?j develops [13,24]. We will consider this case.

In figure 3 we show the solution of equations (33) – (35)

fulfilling the conditions given by equations (36) and the

initial conditions discussed above. We have chosen the far

field E?= –1 and the diffusion coefficient D=0.1. The

profiles for the electron and ion densities are plotted along

with the electric field in the comoving frame. The densities

decay asymptotically for large x as exp( – lx) with l5 0.

Around x= –10 a non-neutral region can be observed. In

this region, the electric screening of the far field starts

taking place due to space charge difference rp – re.

5.2 Shock fronts

We will further simplify the analysis by taking the limit

D=0 in the streamer equations. From previous discussion

at the end of section 4.1, this limit is smooth for negative

fronts (though it is not the case for positive fronts). It

reduces the order of the equations and makes it possible to

integrate them explicitly. If we take D=0 in equations

(33) – (35), after some straightforward manipulations, we

obtain

�u@xEþ reE ¼ 0 : ð37Þ

This equation is a consequence of charge conservation as

we can see by writing @tqþr � jtot ¼ 0, with the total

charge defined as q=rp – re. In our model each ionizing

collision produces the same number of negative and

positive charges, so we have r � jtot ¼ 0. The total current

is given by jtot ¼ @tEþ reE, and for a planar front with

constant and time independent field E ¼ E1 ez in the non-

ionized region where re=0, the total current jtot ¼ jtotðtÞ ez
vanishes.

We can solve equation (37) for the electric field, and then

obtain the electron and ion densities analytically. The

solution is a shock front [14]. In figure 4 the electron density

for a shock front is plotted. The shock has a discontinuity

at x=0.

5.3 Transversal instabilities: corrugation of the shock front

The planar shock front may be unstable with respect to

periodic perturbations on the surface of discontinuity

which then form ‘ripples’ or ‘corrugations’. In this case,

we are interested in obtaining the dispersion relation to find

which mode will grow faster and eventually determine the

characteristic shape of the streamer.

Let the planar shock front that propagates into the z

direction receive a small perturbation with an arbitrary

dependence on the transverse coordinates x and y. Within

linear perturbation theory, the perturbation can be decom-

posed into Fourier modes. Because of isotropy within the

(x,y) plane, we can restrict the analysis to Fourier modes in

the x direction and we consider linear perturbations

proportional to exp(st+ikx). Therefore, to predict the

evolution of an arbitrary transverse perturbation we need

the growth rate s as a function of the wave number k. A

perturbation of the densities and electric field will yield a

perturbation of the position of the ionization shock front.

Hence, we introduce the variable z= x – E exp(ikx+ st) and

the ansatz

reðx; z; tÞ ¼ re0ðzÞ þ E re1ðzÞ exp ðikxþ stÞ ; ð38Þ

rpðx; z; tÞ ¼ rp0ðzÞ þ E rp1ðzÞ exp ðikxþ stÞ ; ð39Þ

fðx; z; tÞ ¼ f0ðzÞ þ Ef1ðzÞ exp ðikxþ stÞ ; ð40Þ

where re0, rp0 and f0 are the electron density, ion density

and electric potential of the planar ionization shock front

from section 5.2. Note that these planar solutions have to

be shifted to the position of the perturbed front. The

substitution of the ansatz (38) – (40) into equations (33) –

(35) (with D=0) gives to leading order in the small

parameter E a set of ordinary differential equations for the

quantities re1, rp1 and f1.

We have to give also the boundary conditions for the

perturbed quantities. There are two types of boundary

condition at z=0, one arising from the boundedness of

densities to the left of the shock front at z?07, and the

other arising from the continuity of the electric field across

the position z=0 of the shock front. The other boundary

conditions at z= –? are the total charge and the electric

field vanishes. Full details of the derivation of the linear

perturbation equation and the boundary conditions can be

found in [14].

We have to solve an eigenvalue problem. Given k, we

want to find s(k) such that there is a solution for the

transverse perturbation equations. The curve s(k) is called

the dispersion curve. In general, an analytic treatment for

any value of k is not possible and we have to resort to

numerical calculations [25]. However, in the limits of small

and large wave number, the equations simplify and we can

obtain the asymptotic behaviour of the dispersion relation

s(k).

We start with the small k limit. The perturbation of the

front in this limit, corresponds to an infinitesimal change of

the electric field E? alone. If we compare two uniformly

translating fronts with infinitesimally different field E? at

identical positions, their linearized difference solves the

same equations. In this case, it can be proved [25] that the

dispersion relation reads

s ¼ ukþOðk2Þ for k � fðuÞ=u: ð41Þ
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Equation (41) has an immediate physical interpretation: 1/k

is the largest length scale involved. It is much larger than

the thickness of the screening charge layer. Therefore the

charge layer can be contracted to a d-function contribution

along an interface line. Such a screening charged interface

has an instability at s= uk.
In the opposite limit of k sufficiently large, we can also

find an analytical relation for the dispersion [25]. The

dispersion relation is in this case

sðkÞ ¼ fðuÞ
2

þOðk�1Þ for k � fðuÞ=u : ð42Þ

Again there is a simple physical interpretation of this

growth rate. When the discontinuity propagates with

velocity proportional to the local electric field u= jEj, a
perturbation in the field DE= f(u)z will grow with the rate

f(u). The averaged slope of the field for z4 0 and z5 0 is

then @zE= f(u)/2 and this slope is precisely the growth rate

in equation (42).

The linear perturbations of planar negative ionization

fronts then satisfy

sðkÞ ¼ jE1jk ; k � fðjE1jÞ=jE1j ;
fðjE1jÞ=2 ; k � fðjE1jÞ=jE1j:

�

The planar front becomes unstable with a linear growth

rate jE?jk for small k to a saturation value f(jE?j)/2. We

can argue that as the radius of curvature increases, the

planar approximation for the tip is reasonable and allows a

qualitative understanding of the branching phenomena.

The results (43) show that all the modes with large enough

wave number k (small wavelength perturbations) would

grow at the same rate. We expect from the physics of the

problem that a particular mode would be selected.

Consequently, besides the ionization characteristics length,

other characteristic lengths should come into play in order

to address this problem.

6. Curved negative fronts and electric shielding

The behaviour of the dispersion curve for large k for the

planar case shows a saturation constant value. Modes of

short wavelength will grow, becoming unstable. In order to

pick up a particular one, we might consider diffusion.

However, electric screening provides other characteristic

lengths. In the case of curved geometries, this screening

might select the mode. In the planar case it is not enough,

as we have seen in the previous section, but for a non-

uniform external field this issue has to be investigated (it is

well known that the bigger curvature is, the stronger the

electric field). In this section we will reformulate the

problem of moving fronts introducing the shielding factor,

following the procedure of [26]. The equation describing the

evolution of the shielding factor makes easier the study of

curved ionization fronts.

Let us consider again the minimal model given by

equations (28) – (32) with D=0. Diffusion effects are

neglected in order to address the effects of curvature

specifically. These equations can be reduced to a simpler

form in order to give some analytic results on the evolution

of the ionization fronts in planar and curved geometries.

We recall that the magnetic field effects are considered to be

negligible in the evolution of the ionization wave, as long as

the drift velocity of the electrons is much smaller than the

Figure 3. Electron density re, ion density rp and electric

field E for a negative ionization front moving with u= jE?j
in the comoving frame. The far field E?= –1 and D=0.1.

Figure 4. Electron density re for a shock front moving with

u= jE?j in the comoving frame. The far field E?= –1

and D=0.
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light velocity. In cases in which the evolution of the

streamer has some symmetry (planar, cylindrical or

spherical), the electric field will have the same symmetry.

If the electric field direction does not change during the

discharge, we can write

Eðr; tÞ ¼ E0ðrÞuðr; tÞ ; ð44Þ

where E0 is the initial electric field. On the other hand, as

the magnetic field vanishes, and the electric current is

approximated as reE, a consequence of Ampère’s law is

@E

@t
þ reE ¼ 0 : ð45Þ

Substituting expression (44) into (45) yields

uðr; tÞ ¼ exp �
Z t

0

dtreðr; tÞ
� �

: ð46Þ

Equation (44) reveals clearly the role played by the function

u(r,t) as a factor modulating the electric field Eðr; tÞ at any
time. For this reason, u can be termed a shielding factor and

determines a screening length that depends on time. This is

a kind of Debye’s length which moves with the front and

leaves neutral plasma behind it [26].

In terms of u(r,t) and the initial condition E0ðrÞ for the
electric field, the charge densities are

reðr; tÞ ¼ � 1

uðr; tÞ
@uðr; tÞ

@t
; ð47Þ

rpðr; tÞ ¼ � 1

uðr; tÞ
@uðr; tÞ

@t
þr � E0ðrÞuðr; tÞð Þ : ð48Þ

These expressions are obtained substituting (44) into the

minimal model equations. So the shielding factor comple-

tely determines the physics of the ionization wave in any

particular problem with D=0.

The above procedure reduces the problem of evolution of

charged particle densities and electric field in the gas to a

simpler one: to find equations and conditions for the

shielding factor u(r,t) from equations and conditions for

the quantities E, re and rp.
Inserting relations (44), (46) – (48) into the minimal

model equations, we find that the evolution of the shielding

factor is given by

1

u

@u

@t
¼ r � E0uð Þ � rp0ðrÞ �

Z jE0j

jE0ju
exp

�1

s

� �
ds ; ð49Þ

uðr; 0Þ ¼ u0ðrÞ ¼ 1 ; ð50Þ

in which boundary conditions should be imposed for

particular physical situations. Note that we have written

the complete minimal model (with D=0) in one single

equation for the shielding factor u. All the physics in the

minimal model is contained in the evolution equations (49)

and (50). Expression (49) is a Burgers-type equation with

an integral term. Burgers equation is a one-dimensional,

nonlinear partial differential equation similar in structure

to the Navier – Stokes equation for the hydrodynamic

velocity field. There are well-known methods to deal with

this equation.

The shielding factor was introduced in [26] to study

negative corona discharges. In this reference, it was found

that, depending on initial conditions for the charge

distribution, shocks or spreading fronts develop. The

amplitude of these solutions decreases in time and the

propagation follows a power law. Moreover diffusion

phenomena due to geometrical effects appear.

7. Summary and outlook

In this paper, we have presented a fully deterministic model

to investigate the initial stage of electric breakdown. The

model is obtained from a Boltzmann kinetic equation

taking the first moments. We discuss the principal processes

such as ionization, attachment, recombination and photo-

ionization which cause a material in a strong electric field to

change its insulating properties. Then we study a reduced

model which is suitable for non-attaching gases such as

nitrogen, without considering photoionization. We show

some numerical simulations based on this model and the

evidence that an anode directed front can branch sponta-

neously due to a Laplacian instability. Then the stability

study of a planar front and the discussion of the dispersion

curve for a transversal perturbation is carried out in the

absence of diffusion. Finally the formulation in terms of the

shielding factor is outlined in order to study non-planar

geometries.

Some questions remain to be answered. From the

dispersion curve an instability will grow for a sufficiently

short wavelength. We expect that a regularization mechan-

ism should come into play. The regularization mechanism

that selects a particular mode could be the electric screening

due to curvature [25]. Another possibility is diffusion

phenomena, which we did not consider in the case of the

shock front.

The physics of low temperature plasmas is an area where

many fundamental questions still remain unanswered, and

where experiments have been ahead of theory. It is a

difficult area due to the fact that there are neutral particles

interacting with charged ones (for high temperature

plasmas it is assumed that the matter is fully ionized). We

agree with the words of Nobel laureate A.J. Leggett when
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he said that if there is something in the conventional

wisdom that you do not understand, worry away at it for as

long as it takes and do not be deterred by the assurances of

your fellow physicists that these questions are well under-

stood.

References

[1] Y.P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991).

[2] L.B. Loeb and J.M. Meek, The Mechanism of the Electric Spark

(Clarendon Press, Oxford, 1941).

[3] H. Raether, Z. Phys. 112 464 (1939).

[4] V.P. Pasko, M.A. Stanley, J.D. Mathews, et al., Nature , 416 152

(2002).

[5] Pictures of sprites, blue jets and lightning in nature can be found on

the web: http://www.sky-fire.tv.

[6] L. Niemeyer, L. Pietronero and H.J. Wiesmann, Phys. Rev. Lett. 52

1033 (1984).

[7] J.M. Guo and C.H.J. Wu, IEEE Trans. Plasma Sci. 21 684 (1993).

[8] S. Chandrasekhar, A.N. Kaufman and K.N. Watson, Ann. Phys. 2

435 (1957).

[9] S.K. Dhali and A.P. Pal, J. Appl. Phys. 63 1355 (1988).

[10] N. Liu and V.P. Pasko, J. Geophys. Res. 109 A04301 (2004).

[11] P.A. Vitello, B.M. Penetrante and J.N. Bardsley, Phys. Rev. E 49 5574

(1994).

[12] P. Rodin, U. Ebert, W. Hundsdorfer, et al., J. Appl. Phys. 92 1971

(2002).

[13] U. Ebert, W. van Saarloos and C. Caroli, Phys. Rev. Lett. 52 4178

(1996); Phys. Rev. E 1530 (1997).

[14] M. Arrayás, Am. J. Phys. 72 1283 (2004).

[15] F.A. Williams, Combustion Theory (Benjamin/Cummings, Menlo

Park, 1985).
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