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Abstract
The Fourier transform method can be applied to obtain electromagnetic knots,
which are solutions of Maxwell equations in a vacuum with non-trivial
topology of the field lines and special properties. The program followed in this
work allows us to present the main ideas and the explicit calculations at
undergraduate level, so they are not obscured by a more involved formulation.
We make use of the helicity basis for calculating the electromagnetic helicity
and the photon content of the fields.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The application of topology ideas to electromagnetism has led to the finding of new solutions of
Maxwell equations in a vacuum [1], some of them with the property of non-nullity [2] and with
other interesting properties in terms of helicity exchange [3] and spin-orbital decomposition [4].

In this article we want to introduce one of the methods used in the current research of
electromagnetic knots at undergraduate level. Only a basic knowledge of the Fourier transform is
required by the student. The content of this article can be proposed to students as a set of advanced
problems exploring special topics such as duality [5] and gauge transforms, the formulation of the
Cauchy problem in electromagnetism, the helicity basis [6], and photon polarization.

We hope that it will help to clarify and review some concepts and ideas through explicit
examples. For instance, in many introductory courses, electromagnetic fields in a vacuum are
presented in terms of planar waves. The planar electromagnetic waves are null fields [7], and this
leads quite often to the misconception that all the electromagnetic fields in a vacuum must satisfy
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the property = =∣ ∣ ∣ ∣ ·cE B E B, 0. Here we present explicit calculations of non-null torus fields
using only Fourier transforms, so we obtain a solution where electric and magnetic fields are not
orthogonal. At the same time the student is calculating a rather non-trivial solution of Maxwell
equations in a vacuum, with many of its properties being the subject of undergoing research [8, 9].

We make a brief summary of Maxwell theory in a vacuum, formulate the Cauchy
problem, and introduce the Fourier decomposition of the initial values of the fields. We show
how to solve the time evolution by making the inverse Fourier transform so expressing the
fields as wave packages determined by the initial conditions. We then obtain the potential
associated with the fields in the Coulomb gauge.

The helicity basis is used to express the potential as combinations of circularly polarized
waves. The helicity basis is useful to introduce the magnetic, electric, and electromagnetic heli-
cities. The helicity of a vector field is a useful quantity to characterize certain topological prop-
erties of the fields, such as the linkage of the field lines, and the electromagnetic helicity can be
related to the difference in the right- and left-photon content of the field in quantum mechanics.

We will apply this program to a set of knotted electromagnetic fields, including the
particular case of the celebrated Hopt–Rañada solution, called the Hopfion.

2. Maxwell theory in vacuum

Electromagnetism in a vacuum three-dimensional space can be described in terms of two real
vector fields, E and B, called the electric and magnetic fields respectively. Using the SI of
units, these fields satisfy the following Maxwell equations in a vacuum:

 =  ´ +
¶
¶

=· ( )
t

B E
B

0, 0, 1

 =  ´ -
¶
¶

=· ( )
c t

E B
E

0,
1

0, 2
2

where c is the speed of light, t is time, and ∇ denotes differentiation with respect to space
coordinates = ( )x y zr , , . The first two equations (1) are identities using the following four-vector
electromagnetic potential in the Minkowski spacetime with coordinates = = =(x ct x x x y, , ,0 1 2

= )x z3 and metric = - - -( )g diag 1, 1, 1, 1 :

=m ⎜ ⎟⎛
⎝

⎞
⎠ ( )A

V

c
A, . 3

In equation (3), A0=V/c, where V is the scalar electric potential, and = ( )A A AA , ,1 2 3 is the
vector electromagnetic potential. Greek indices such as μ take values 0, 1, 2, 3 and latin
indices such as i take values 1, 2, 3. An electromagnetic field tensor mnF can be defined as

= ¶ - ¶mn m n n m ( )F A A , 4

with components related to the electric and magnetic fields through



=

=- ( )

c F

F

E

B

,
1

2
. 5

i
i

i ijk
jk

0

In three-dimensional quantities, equation (4) is

=- -
¶
¶

=  ´ ( )

V
t

E
A

B A

,

. 6

Eur. J. Phys. 40 (2019) 015205 M Arrayás and J L Trueba

2



The first pair (1) of Maxwell equations become a pair of identities by using (6). The dynamics
of electromagnetism in a vacuum are then given by the second pair (2) of Maxwell equations,
which can be written in spacetime quantities as

¶ =m
mn ( )F 0. 7

Maxwell equations (1)–(2) are invariant under the map -( ) ( )c cE B B E, , , as stated in
[5]. This means that, in a vacuum, it is possible to define another four-potential,

= ¢m ( ) ( )C c V C, , 8

so that the dual of the electromagnetic tensor mnF , defined as

* e=mn mnab
ab ( )F F

1

2
, 9

satisfies

* = - ¶ - ¶mn m n n m( ) ( )F
c

C C
1

, 10

or, in terms of three-dimensional fields,

=  ´ =  ¢ +
¶
¶

( )V
c t

E C B
C

,
1

. 11
2

In this dual formulation, the pair of equations in (2) are simply identities when definitions (11)
are imposed, and the dynamics of electromagnetism in a vacuum are given by the first pair of
Maxwell equations (1), written in terms of components of the four-potential Cμ.

Alternatively, Maxwell equations in a vacuum can be described in terms of two sets of
vector potentials, as in definitions (4) and (10), that satisfy the duality condition (9). In this
way, dynamics are encoded in the duality condition.

3. Fourier decomposition for electromagnetic fields in vacuum

The method of Fourier transform [10] can be used to get solutions of Maxwell equations in a
vacuum (1)–(2) from initial conditions for the electric and the magnetic fields. Here we
review some basics for the case of electromagnetic fields defined in all the three-dimensional
spaces R3 that satisfy equations (1)–(2).

Suppose that the initial values of the electric and magnetic fields,

= =
= =

( ) ( )
( ) ( ) ( )

t
t

E r E r
B r B r

, 0 ,
, 0 , 12

0

0

are given and defined in R3. It is necessary that they satisfy the conditions

 =
 =

·
· ( )

E
B

0,
0. 13

0

0

These conditions assure that the electric and the magnetic fields will be divergenceless at any
time, since Maxwell equations in a vacuum conserve them. For example, in the case of the
electric field,

¶
¶

 = 
¶
¶

=   ´ =
⎛
⎝⎜

⎞
⎠⎟( · ) · · ( ) ( )

t t
cE

E
B 0, 142

where equation (2) has been used. A similar computation can be done for the magnetic field.
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To solve Maxwell equations in a vacuum with Cauchy conditions given by fields (12)
that satisfy (13), plane wave solutions can be proposed, such that they can be decomposed in
Fourier terms,

ò

ò
p
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= +

= +

w w

w w

- - - +

- - - +

( )
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( ( ) ( ) )
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where w = ck and = ·k k k . Taking t=0 in (15), we get
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so that the vectors

= +
= +

( ) ( ) ( )
( ) ( ) ( ) ( )

E k E k E k
B k B k B k

,
, 17

0 1 2

0 1 2

are inverse Fourier transforms of the initial values (12),
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and they satisfy

=
=

· ( )
· ( ) ( )

k E k
k B k

0,
0, 19

0

0

because of (13).
Now, in expressions (15), we impose the pair of Maxwell equations  ´ =B

¶ ¶( )c tE1 2 and  ´ = -¶ ¶tE B . Taking then t= 0 and using (17), we get the con-
ditions

´ = -

´ =- -

( ) ( ( ) ( ))

( ) ( ( ) ( )) ( )

ck
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c

k E k B k B k

k B k E k E k

,

. 20

0 1 2

0 1 2

From (20), we obtain a solution for the vectors in k-space, namely

= - ´

= + ´

= + ´

= - ´

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )
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2 2
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2 2
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, 21

k

k

k

k

1 0 0

2 0 0

1 0 0

2 0 0
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where we have defined the unit vector

= ( )
k

e
k

. 22k

Consequently, the time-dependent fields are obtained computing first the Fourier transforms
(18) of the initial values (12), and then performing the Fourier integrals
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ò
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w w
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= + ´
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1

2
d cos sin ,

,
1

2
d cos sin . 23

i
k

i
k
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k r

3 2
3

0 0

3 2
3

0 0

By examining equation (17) one can see that the complex Fourier basis components satisfy

- =
- =

( ) ¯ ( )
( ) ¯ ( ) ( )

E k E k
B k B k

,

, 24
0 0

0 0

where Ē0 is the complex conjugate of E0.
The Fourier transforms can be written in other ways. We begin by taking
w = +w w-( )t e ecos 2i t i t , w = -w w-( )t e e isin 2i t i t , in equation (23), to get
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Next we perform the change -k k in the second terms of both fields using that
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Taking into account the properties (24), we get
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k
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3
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3 2
3
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where we have introduced the four-dimensional notation w= - ·kx t k r.
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4. Fourier transforms of vector potentials in the Coulomb gauge

As stated in equations (6) and (11), any electromagnetic field in a vacuum can be written in
terms of two sets of four-vector electromagnetic potentials =m ( )A V c A, and = ¢m ( )C cV C,
so that

=- -
¶
¶

=  ´

=  ´ =  ¢ +
¶
¶

( )

V
t

V
c t

E
A

C

B A
C

,

1
. 28

2

There are some circumstances, as computations of electromagnetic helicity or spin, in which
the Fourier transforms of these four-vector potentials can be useful. Here we give a simple
recipe to get those Fourier transforms in a similar form to equation (27) in a special case:
when the four-vector potentials Aμ and Cμ are taken to satisfy the Coulomb condition.

It is known that Aμ and Cμ are not totally defined by equation (28). This property is
called gauge freedom and it means that, if we have solutions mA1 and mC1 that satisfy
equations (28), then any other potentials mA2 and mC2 given by

= +
¶
¶

= - 

¢ = ¢ +
¶
¶

= - 

( ) ( )

( ) ( ) ( )

V V
t
f t f t

V V
c t

g t g t

r A A r

r C C r

, , , ,

1
, , , , 29

2 1 2 1

2 1 2 2 1

in which ( )f tr, and ( )g tr, are functions of space and time, are also solutions of
equation (28). Fixing the gauge is choosing a particular form for the vector potentials. A well-
known possibility is the Coulomb gauge, in which the vector potentials are chosen so that

=  =
¢ =  =

·
· ( )

V
V

A
C

0, 0,
0, 0. 30

As a consequence, they satisfy the duality equations

=  ´ =
¶
¶

=  ´ = -
¶
¶

( )

c t

t

B A
C

E C
A

1
,

. 31

2

In this gauge, since equations (30) and (31) are similar to the Maxwell equations for the
electric and magnetic fields in a vacuum, and by comparison with (27), one can propose for
the potentials the following Fourier decomposition in terms of plane waves:

ò

ò
p

p
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= +

-

-

( )
( )

[ ( ) ( )]

( )
( )

[ ( ) ( )] ( )

/

/

t k e e

t
c

k e e

A r a k a k

C r c k c k

,
1

2
d ,

,
2

d , 32

ikx ikx

ikx ikx

3 2
3

3 2
3

where the factor c in C is taken for dimensional reasons. Taking time derivatives and using
(31),
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ò
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p

p

=-
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By comparison with equation (27), one gets

= - ´

=
-
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( ) ( ( ) ( ))
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i

ck
c

i

ck
c

a k E k e B k

c k B k e E k

2
,

2
. 34

k

k

0 0

0 0

Consequently, in the Coulomb gauge, the vector potentials of the electromagnetic field in a
vacuum can be decomposed in the Fourier basis as
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ikx
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ikx
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ikx
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3 2
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5. Helicity basis

The helicity Fourier components appear when the vector potentials A and C, in the Coulomb
gauge, are written as a combination of circularly polarized waves [6], as





ò

ò

m

p
m
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-

-

( )
( )

[ ( ( ) ( ) ( ) ( )) ]
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k
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d

2
. . ,
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2

d

2
. . , 36

ikx
R R L L

ikx
R R L L

0
3 2

3

0
3 2

3

where ÿ is the Planck constant, μ0 is the vacuum magnetic permeability and C C. . means
complex conjugate. The Fourier components in the helicity basis are given by the complex
unit vectors ( )e kR , ( )e kL , = ke kk , and the helicity components ( )a kR , ( )a kL that, in the
quantum theory, are interpreted as annihilation operators of photon states with right- and left-
handed polarization, respectively ( ¯ ( )a kR , ¯ ( )a kL are, in quantum theory, creation operators of
such states) [6].

The unit vectors in the helicity basis are taken to satisfy the relations

= - = - - = -
= = = = =

´ = ´ = ´ =
´ =- ´ = ´ = -

¯ ( ) ( ) ( ) ( )
· · · · ·

( )i i i

e e e k e k e k e k
e e e e e e e e e e

e e e e e e
e e e e e e e e e

, , ,
0, 0, 1,

0,
, , . 37

R L R L L R

k R k L R R L L R L

k k R R L L

k R R k L L R L k
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These relations can be achieved by taking real vectors e1, e2 in k-space such that

= = = = =

´ = ´ = ´ =

- =- - =

· · · · ·
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and constructing the complex unit vectors

= +
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i
i

e e e
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,
. 39

R

L

1 2

1 2

The relation between the helicity basis and the planar Fourier basis can be understood by
comparing equations (35) and (36). It is found that




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From these expressions,
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1
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. 41
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0
0 0 0 0

0
0 0 0 0

Consequently, in the helicity basis, fields in a vacuum are written as a superposition of
circularly polarized waves. The electric and magnetic fields of an electromagnetic field in a
vacuum, and the vector potentials in the Coulomb gauge, can be expressed in this basis as (we
do not write the dependence on k in the following expressions for clarity):









ò

ò

ò

ò

m

p
m

p
m

p
m
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= + - +

= - + -
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-

-

-

-
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[ ( ) ( )]

( )
( )

[ ( ) ( )]
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/

/

t
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k
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i e a a i e a a

t
c

k
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e a a e a a

t
c

k
k

e a a e a a

t
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k
k

i e a a i e a a

E r e e e e

B r e e e e

A r e e e e

C r e e e e

,
2

d
2

,

,
2

d
2

,

,
2

d
1

2
,

,
2

d
1

2
. 42

ikx
R R L L

ikx
R L L R

ikx
R R L L

ikx
R L L R

ikx
R R L L

ikx
R L L R

ikx
R R L L

ikx
R L L R

0
3 2

3

0
3 2

3

0
3 2

3

0
3 2

3

The unit vectors in this basis satisfy equation (37) and the basis elements are related to the
planar Fourier basis through equations (40) or (41).

The helicity basis can be used in relation to the helicity of a vector field [11–16], which is
a useful quantity in the study of topological configurations of electric and magnetic lines. In
the case of electromagnetism in a vacuum, the magnetic helicity can be defined as the integral
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òm
= · ( )h

c
r A B

1

2
d , 43m

0

3

and the electric helicity [17–20] is

ò ò
e

m
= =· · ( )h

c
r

c
rC E C E

2
d

1

2
d , 44e

0 3
3

0

3

where e m= ( )c10
2

0 is the vacuum electric permittivity. It can be proved [3, 4] that (i) if the
integral of ·E B is zero, both the magnetic and the electric helicities are constant during the
evolution of the electromagnetic field, (ii) if the integral of ·E B is not zero, the helicities are
not constant but they satisfy = -/ /h t h td d d dm e , so we get an interchange of helicities
between the magnetic and electric parts of the field, and (iii) for every value of the integral of

·E B, the electromagnetic helicity = +h h hm e is a conserved quantity.
Using the helicity basis defined in (36), the electromagnetic helicity h of an electro-

magnetic field in a vacuum can be written as

 ò= + = -( ( ) ( ) ( ) ( )) ( )h h h k a a a ak k k kd . 45m e R R L L
3

From the usual expressions for the number of right- and left-handed photons in quantum
mechanics,

ò
ò

=

=

( ) ( )

( ) ( ) ( )

N k a a

N k a a

k k

k k

d ,

d , 46

R R R

L L L

3

3

we can write

= -( ) ( )h N N . 47R L

Consequently, the electromagnetic helicity is the classical limit of the difference between the
numbers of right-handed and left-handed photons [17, 18, 21].

6. Fourier method in the case of a set of knotted electromagnetic fields

There is a set of so-called non-null torus electromagnetic knots [1, 2] that are exact solutions
of Maxwell equations in a vacuum with the property that, at a given initial time t=0, all
pairs of lines of the field =( ) ( )B r B r, 00 are linked torus knots, and that the linking number
is the same for all the pairs. Similarly, all pairs of lines of the field =( ) ( )E r E r, 00 are linked
torus knots and the linking number of all pairs of lines is the same.

The initial values ( )B r0 and ( )E r0 for the magnetic and the electric fields of these non-
null torus electromagnetic knots can be obtained [2] from two complex scalar fields f ( )tr,
and q ( )tr, through the equations

p
f f

ff
=

 ´ 
+

( )
¯

( ¯ )
( )a

i
B r

2 1
, 480 2

p
q q

qq
=

 ´ 
+

( )
¯

( ¯)
( )a c

i
E r

2 1
, 490 2

where a is some constant proportional to the product  mc 0 to give the electromagnetic field its
correct dimensions in SI units. For historical purposes, we note that a similar construction was
presented by Bateman in 1915 [22]. Written in this way, the magnetic field lines are given by
the level curves of the scalar field f ( )r and the electric field lines are given by the level curves
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of the scalar field q ( )r . If we take

f =
+

+ -
( ) ( )

( ( ))
( )

( )

( )
X iY

Z i R
r

2 2

2 1
, 50

n

m2

where n m, are positive integers and we have used the notation

=
-∣ ∣

( )( )f
f

f
, 51n

n

n 1

in which f is a complex function of space coordinates. In (50), we use dimensionless
coordinates (X, Y, Z), related to the physical ones (x, y, z) in the SI of units by

=( ) ( ) ( )X Y Z
x y z

L
, ,

, ,
, 52

0

where L0 is a constant with dimensions of length, and

= + + =
+ +

= ( )R X Y Z
x y z

L

r

L
. 532 2 2 2

2 2 2

0
2

2

0
2

All the magnetic lines of the field defined by (48) are (n, m) torus knots. This initial magnetic
field is

p
=

+
- - -

+ - -⎛
⎝⎜

⎞
⎠⎟( )

( )
( )a

L R
mY nXZ mX nYZ n

X Y Z
B r

8

1
, ,

1

2
. 540

0
2 2 3

2 2 2

Moreover, the linking number of every pair of magnetic lines at t=0 is equal to nm.
Similarly, for the initial electric field we use the complex scalar field

q =
+

+ -
( ) ( )

( ( ))
( )

( )

( )
Y iZ

X i R
r

2 2

2 1
, 55

l

s2

where l, s are positive integers. Using (49), we get

p
=

+
- - +

- +
⎛
⎝⎜

⎞
⎠⎟( )

( )
( )c a

L R
l
X Y Z

lXY sZ lXZ sYE r
8

1

1

2
, , . 560

0
2 2 3

2 2 2

This initial electric field is such that all its electric lines are (l, s) torus knots and any pair of
electric lines has a linking number equal to l s. These topological properties only happen for
t=0. This is due to the fact that the topology changes during time evolution if one of the
integers (n, m, l, s) is different from any of the others (see [2]).

In figure 1 we can see the case (n, m, s, l)=(3, 2, 3, 2), which is the trefoil case. The
field lines are trefoil knots and they are linked at the initial time. We have plotted a few field
electric and magnetics lines calculated from (54) and (56) starting from the same points in the
middle of the figure. Clearly they are not orthogonal.

Let us compute the magnetic and electric fields from the Cauchy conditions (54) and
(56) that satisfy the required conditions  =  =· ·B E 00 0 . We will use the dimen-
sionless time =T ct L0. Before the computations, we can use (23) to build the complex
vector field
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òp
w

w

+ = +

+ ´ +

- ⎜ ⎟

⎜ ⎟
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⎛
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⎠
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⎝
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⎠

⎤
⎦⎥
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( )
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( ) ( ) ( )

·
/

t i
t

c
k e i

c
t

i
c

t

B r
E r

B k
E k

e B k
E k

,
, 1

2
d cos

sin , 57

i

k

k r
3 2

3
0

0

0
0

to show that we need first to compute the complex vector field +( ) ( )i cB k E k0 0 . Using
(18), we get

òp
+ = +⎜ ⎟⎛

⎝
⎞
⎠( ) ( )

( )
( ) ( ) ( )·

/
i

c
r e i

c
B k

E k
B r

E r1

2
d , 58ik r

0
0

3 2
3

0
0

where ( )B r0 and ( )E r0 are given by (54) and (56) respectively. We are going to use
dimensionless coordinates in k-space, defined by

w
= = =( ) ( ) ( )K K K L k k k K L k

L

c
, , , , , . 59x y z x y z0 0

0

The integrals in (58) can be done to give

p
+ = - -

+ -

+ + - -

+ -

- ⎡
⎣⎢( ) ( ) ( )

( )

( )

( )] ( )

i
c

L a e n

K
K K K K K K

i m K K

i
l

K
K K K K K K

s K K

B k
E k

2
, ,

, , 0

, ,

0, , , 60

K

x z y z x y

y x

y z x y x z

z y

0
0 0 2 2

2 2

so the Fourier transform of the initial magnetic field ( )B r0 is

p
= - -

+ -

- ⎡
⎣⎢( ) ( )

( )] ( )

L a e n

K
K K K K K K

i m K K

B k
2

, ,

, , 0 , 61

K

x z y z x y

y x

0
0 2 2

and the Fourier transform of the initial magnetic field ( )E r0 is

p
= + - -

+ -

- ⎡
⎣⎢( ) ( )

( )] ( )

L c a e l

K
K K K K K K

i s K K

E k
2

, ,

0, , . 62

K

y z x y x z

z y

0
0 2 2

Figure 1. Electric and magnetic lines given for (n, m, s, l)=(3, 2, 3, 2), the trefoil at
initial time starting from same points. The field lines are linked with each other. The
electric and magnetic fields are not orthogonal.
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Note that the Fourier transforms (61) and (62) satisfy the conditions - =( ) ¯ ( )B k B k0 0 and
- =( ) ¯ ( )E k E k0 0 , as was established in (24). According to (57), we also need to compute,

using (60), the complex vector

p
´ + = -

+ - -

+ -

+ - -

-
⎜ ⎟⎛
⎝

⎞
⎠
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, , 0

, ,
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, , . 63

k

K

y x

x z y z x y

z y

y z x y x z

0
0 0

2 2

2 2

The next goal is to compute the integral (57) that, in terms of dimensionless coordinates in x-
space and k-space, can be written as

òp
+ = +

+ ´ +

- ⎜ ⎟
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c
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,
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It is interesting to compute first the following integrals,

ò
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1 2
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0
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in which

=
- + ( )A

R T 1

2
. 66

2 2

Now we make one useful observation. If, in the integral (64), we need to compute a term
containing Kx times one of the integrands of the expressions (65), we can do it in this way,

òp
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and the same happens with I2c, I1s, and I2s. If we need to compute a term containing Kx
2, we

can make
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and, if we need to compute a term containing Kx Ky,
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Defining the quantities
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( ) ( )

P T T A

Q A A T

3 ,
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we can finally compute (64), obtaining that the set of non-null torus electromagnetic knots can
be written as
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7. Helicity basis for the set of electromagnetic knots

Let us consider the helicity basis for the electromagnetic fields we have computed, since it is
interesting to understand certain physical quantities of the electromagnetic field such as
energy, helicity, and linear and angular momentum. Using expressions (61) and (62), we get
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so that
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According to (41),
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from which
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One interesting application of these results appears by multiplying a eR R and its complex
conjugate, and the same for a eL L. Using (37),
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From (46), the classical expressions corresponding to the quantum mechanical number of
right- and left-handed photons for our set of electromagnetic knots are
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where we have to remember that the constant a is proportional to the product  mc 0 because of
dimensional reasons. In the particular case of the Hopfion, for which n=m=l=s=1, we
have
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If, moreover, we set the arbitrary constant a to have the value  m=a c 0, for the set of
electromagnetic knots we are studying we get
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and for the Hopfion,

=
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( )
( ) ( )
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R

L

so the classical value corresponding to the number of right-handed photons in the Hopfion is
1, and the classical value corresponding to the number of left-handed photons is 0.

8. Conclusions

Solutions to Maxwell equations in a vacuum can be obtained by taking an initial electro-
magnetic field configuration, and by Fourier transform, propagating it in time. This con-
struction is used in the generation of non-null toroidal electromagnetic fields [2]. Here we
have presented a detailed calculation suitable for students with a basic mathematical
background.

The helicity is a property which characterizes certain non-trivial topological behavior of
the field and can be related to its photon content when the field is quantized. The Fourier
decomposition can be expressed in terms of the helicity or circularly polarized basis which is
convenient in order to calculate the helicity.

We have applied the Fourier method to compute a set of solutions such that at a particular
time the field lines are torus knots. The set includes the Hopfion (which is a null field) and in
general many non-null fields.

We believe that the calculations involved are at undergraduate level, so any student with
a minimum background can rework and check them. Maxwell equations remain a funda-
mental cornerstone of our understanding of nature, but one might think that the classical
electromagnetic theory of light has obtained its limits of serviceability in terms of funda-
mental research. We hope that this work proves the contrary. Solutions with new topological
properties may pave the road for future discoveries.
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