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Abstract

In this paper we consider the classical relativistic motion of charged particles

in a knotted electromagnetic field. After reviewing how to construct

electromagnetic knots from maps between the three-sphere and the two-sphere,

we introduce a mean quadratic radius of the energy density distribution in order

to study some properties of this field. We study the classical relativistic motion

of electrons in the electromagnetic field of the Hopf map, and compute their

trajectories. It is observed that these electrons initially at rest are strongly

accelerated by the electromagnetic force, becoming ultrarelativistic in a period

of time that depends on the knot energy and size.

PACS numbers: 03.50.De, 03.30.+p, 02.40.Pc

(Some figures in this article are in colour only in the electronic version)

1. Introduction

As pointed out in a recent paper by Irvine and Bouwmeester [1], electromagnetic knots are

exact solutions of the classical Maxwell equations of electromagnetism in vacuum. They first

appeared in a paper by Rañada [2] in 1989. Rañada himself [3] has used these solutions as

the basic elements of a topological model of electromagnetism, which is locally equivalent to

Maxwell’s standard theory but implies furthermore some topological quantization conditions

with interesting physical meaning [4–8].

Electromagnetic knots are defined through two fundamental complex scalar fields (φ, θ)

whose level curves coincide with the magnetic and electric lines respectively, each one of

these lines being labelled by the constant value of the corresponding scalar. Both scalars are

assumed to have only one value at infinity, which is equivalent to compactifying the physical

three-space to the sphere S3. Moreover, the complex plane is compactified to the sphere S2

via stereographic projection. As a result of such compactifications, the scalars φ and θ can

be interpreted, at any time, as maps S3 → S2, which can be characterized by the value of the

Hopf index n [9]. It can be shown that the two scalar fields have the same Hopf index and
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that the magnetic and the electric lines are generically linked with the same Gauss linking

number ℓ. If µ is the multiplicity of the level curves (i.e. the number of different magnetic or

electric lines that have the same label φ or θ ), then the Hopf index of both scalars is n = ℓµ2.

The Hopf index can thus be interpreted as a generalized linking number if we define a line

as a level curve with µ disjoint components. Note that there are some cases of curves in R3

in which the Gauss linking number is zero but the link is not topologically trivial. Examples

are the Whitehead link or the Borromean rings [10]. These cases could be included in the

model of electromagnetic knots provided the complex scalar fields can be found for these

configurations.

An important feature of the model is that the Faraday 2-form F = 1
2
Fµν dxµ ∧ dxν and

its dual ∗F = 1
2

∗Fµν dxµ ∧ dxν are proportional to the two pull-backs of σ , the area 2-form

in S2, by φ and θ ,

F = −
√

a φ∗σ, ∗F = c
√

a θ∗σ, (1)

where a is a constant introduced so that the magnetic and electric fields have correct dimensions

and c is the velocity of light in vacuum. In the international system of units, a can be expressed

as a pure number times the Planck constant h̄ times the light velocity c times the vacuum

permeability µ0. As a consequence of the definitions (1), the maps φ and θ are dual to one

another, ∗(φ∗σ) = −θ∗σ , where * is the Hodge or duality operator. This duality condition

guarantees that both F and ∗F obey the Maxwell equations in empty space without the need

of any other requirement.

The electromagnetic fields obtained in this way are called electromagnetic knots. They are

radiation fields as they verify the condition E · B = 0. It can be proved (see [5] for the details)

that any radiation field in vacuum is locally equivalent to an electromagnetic knot. Moreover,

because of the Darboux theorem, any electromagnetic field in empty space can be expressed

locally as the sum of two radiation fields. Consequently, a model of electromagnetism based

on these electromagnetic knots is locally equivalent to Maxwell standard theory. However,

its difference from the global point of view has interesting consequences, as are the following

topological quantizations. (i) The electric charge of any point particle must necessarily

be equal to an integer multiple of the fundamental value q0 =
√

h̄cǫ0 (see [6]). (ii) The

electromagnetic helicity H = h̄c(NR − NL) is also quantized [5], where NR and NL are the

classical expressions of the number of right- and left-handed photons contained in the field

(i.e. NR − NL =
∫

d3k(āRaR − āLaL), aR(k), aL(k) being Fourier transforms of the vector

potential Aµ in classical theory, but creation and annihilation operator in the quantum version).

In fact, for any electromagnetic knot, n = NR − NL, which is a remarkable relation between

the Hopf index (i.e. the generalized linking number) of the classical field and the classical

case of the difference NR − NL. According to this relation, and taking into account the

results of [11], adding a right or left photon would imply to add or remove a crossing of the

field lines. (iii) The topology of the model also implies the quantization of the energy of

the electromagnetic field in a cavity [7]. (iv) The magnetic flux of a superconducting ring is

topologically quantized in the model of electromagnetic knots [8].

In this work we study a classical charged particle in a knotted electromagnetic field. We

find that the particles can accelerate to the light velocity. We first revise the construction

and some physical properties of the electromagnetic field built from the Hopf map between

the compactified three-space (the sphere S3) and the compactified complex plane (the sphere

S2). In particular, we pay attention to the electromagnetic energy density and how it evolves

with time and introduce a mean quadratic radius of the energy density. Then we consider the

relativistic motion of electrons in this electromagnetic field. We study the trajectories of the

electrons and their velocities, showing that they become ultrarelativistic for a wide range of
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the electromagnetic energy of the knot. Finally we give some conclusions and prospects of

future work.

2. The electromagnetic field of the Hopf fibration

A method to find explicitly some electromagnetic knots can be found in [12]. Let φ0(r), θ0(r),

be the two complex scalar fields such that they can be considered as maps φ0, θ0 : S3 → S2

after identifying the physical space R3 with S3 and the complex plane with S2. They have to

satisfy the following two conditions.

Condition 1. The level curves of φ0 must be orthogonal, at each point, to the level curves of

θ0, since we know that electromagnetic knots are radiation fields (E · B = 0).

Condition 2. The Hopf index of φ0 and of θ0 are equal, H(φ0) = H(θ0). This is necessary to

ensure that the condition E · B = 0 is maintained during time evolution.

Given φ0 and θ0 with these two conditions, we can construct the magnetic and electric

fields at t = 0 as

B(r, 0) =
√

a

2π i

∇φ0 × ∇φ̄0

(1 + φ̄0φ0)2
,

E(r, 0) =
√

ac

2π i

∇ θ̄0 × ∇θ0

(1 + θ̄0θ0)2
.

(2)

It is convenient to work with dimensionless coordinates in the mathematical spacetime S3 ×R,

and in S2. In order to do that, we define the dimensionless coordinates (X, Y,Z, T ), related

to the physical ones (x, y, z, t) (in the SI of units that we will use in this work) by

(X, Y,Z, T ) =
1

L0

(x, y, z, ct), (3)

and r2
/

L2
0 = (x2 +y2 +z2)

/

L2
0 = X2 +Y 2 +Z2 = R2, where L0 is a constant with dimensions

of length. Now, let us consider the Hopf map

φ0 =
2(X + iY )

2Z + i(R2 − 1)
, (4)

whose fibres have been used as a basis for a case of knotted entanglement in reaction–

diffusion models, in particular for a FitzHugh–Nagumo model [13]. We also consider the map

corresponding to the change (X, Y,Z) �→ (Y, Z,X) in (4):

θ0 =
2(Y + iZ)

2X + i(R2 − 1)
. (5)

Because of their construction, it is obvious that both maps (4) and (5) have the same Hopf

index. In fact, these maps have Hopf index n = 1 and their fibrations are mutually orthogonal

at each point. Consequently, we can build an electromagnetic knot from these maps. The

Cauchy data for the magnetic and electric fields are

B(r, 0) =
8
√

a

πL2
0(1 + R2)3

(

Y − XZ,−X − YZ,
−1 − Z2 + X2 + Y 2

2

)

,

E(r, 0) =
8
√

ac

πL2
0(1 + R2)3

(

1 + X2 − Y 2 − Z2

2
,−Z + XY, Y + XZ

)

.

(6)

Note that every time conditions 1 and 2 (see the beginning of this section) are necessary

to construct electromagnetic fields in the form of equation (1). For example, take φ0 as in
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equation (4) but θ0 = 0. The fibres of these maps are obviously orthogonal at t = 0 but they

have different Hopf indexes. When time evolves, the magnetic and electric fields will not be

orthogonal.

From (6), two vector potentials A and C can be computed, such that B = ∇ × A,

E = ∇ × C, with the results

A(r, 0) =
2
√

a

πL0(1 + R2)2
(Y,−X,−1),

C(r, 0) =
2
√

ac

πL0(1 + R2)2
(1,−Z, Y ).

(7)

The magnetic and electric helicities of this knot are defined to be

hm =
1

2µ0

∫

R3

A · B d3r,

he =
ε0

2

∫

R3

C · E d3r,

(8)

where ε0 is the vacuum permittivity. Taking into account the Cauchy data (6) and the potentials

(7), the electromagnetic helicity yields

h = hm + he =
a

2µ0

+
a

2µ0

=
a

µ0

. (9)

To find the electromagnetic knot at any time from the Cauchy data (6), we use Fourier analysis.

The fields turn out to be [12]

B(r, t) =
√

a

πL2
0(A

2 + T 2)3
(QH1 + P H2),

E(r, t) =
√

ac

πL2
0(A

2 + T 2)3
(QH2 − P H1),

(10)

where the quantities A, P, Q are defined by

A =
R2 − T 2 + 1

2
, P = T (T 2 − 3A2), Q = A(A2 − 3T 2), (11)

and the vectors H1 and H2 are

H1 =
(

Y + T − XZ,−X − (Y + T )Z,
−1 − Z2 + X2 + (Y + T )2

2

)

,

H2 =
(

1 + X2 + Z2 − (Y + T )2

2
,−Z + X(Y + T ), Y + T + XZ

)

.

(12)

This solution now fulfils E · B = 0 and E2 − c2B2 = 0 at any time. It is possible to obtain

directly the electromagnetic field (10) from the time-dependent expressions (1). In terms of

the magnetic and the electric fields, we have

B(r, t) =
√

a

2π i(1 + φφ̄)2
∇φ × ∇φ̄ =

√
a

2π ic(1 + θ θ̄)2

(

∂θ̄

∂t
∇θ −

∂θ

∂t
∇ θ̄

)

,

E(r, t) =
√

ac

2π i(1 + θ θ̄)2
∇ θ̄ × ∇θ =

√
a

2π i(1 + φφ̄)2

(

∂φ̄

∂t
∇φ −

∂φ

∂t
∇φ̄

)

,

(13)

where the time-dependent expressions of the maps φ and θ are (see [5])

φ =
(AX − T Z) + i(AY + T (A − 1))

(AZ + T X) + i(A(A − 1) − T Y )
,

θ =
(AY + T (A − 1)) + i(AZ + T X)

(AX − T Z) + i(A(A − 1) − T Y )
.

(14)
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Figure 1. Evolution of three energy density levels of the electromagnetic knot of the Hopf

fibration. From left to right and top to bottom, T = 0, T = 0.5, T = 1, T = 1.5.

Coordinates (X, Y,Z) are dimensionless and are related to the physical coordinates (x, y, z)

through (X, Y,Z) = (x, y, z)/L0. The levels correspond to values 0.1, 0.2 and 0.3 of the density

energy in a/(µ0L
4
0) units (see equation (15)). The density energy levels displayed are 0.1, 0.2 and

0.3 in increasing order of colour intensity. At T = 1.5, the levels 0.2 and 0.3 are not present.

Note that the level curves of both maps φ and θ remain linked with a Gauss linking number

equal to 1. The evolution of the curved lines of these maps gives the evolution of the force

lines of the magnetic and electric fields given by the expressions (13).

The energy density of the electromagnetic field (10) is given by,

U(r, t) =
ε0E

2

2
+

B2

2µ0

=
a

4π2µ0L
4
0

(1 + X2 + (Y + T )2 + Z2)2

(A2 + T 2)3
. (15)

The maximum of the energy density is located at X = Z = 0 during time evolution. The

function U is symmetric in the coordinates X and Z. In figure 1, we show some isosurfaces of

the energy density U for times T = 0, 0.5, 1, 1.5. The energy density levels represented are

0.1, 0.2 and 0.3 in a
/(

µ0L
4
0

)

units. It can be seen how the isosurfaces spread as the energy

density goes to zero. For time T = 1.5, the 0.3 and 0.2 levels have disappeared. Note that the

total electromagnetic energy of the knot

E =
∫

U d3r =
2a

µ0L0

(16)

remains constant. Note that the same helicity unit a also appears in the energy of the

electromagnetic knot. Relations between topology and energy of magnetic knots have been

studied recently in [14].
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At T = 0, the energy density has spherical symmetry and its maximum is located at the

origin. As time increases, the symmetry is broken and the maximum is located at X = Z = 0

and Y close to T. Approximately, the position of the maximum of the energy density can be

found up to T = 1 at X = Z = 0, Y = T (1 + 6T 2)/(2 + 6T 2).

The energy density of the knot extends to infinity, but we can define a mean quadratic

radius of the energy distribution as

〈r2〉 =
∫

(r − rmax)
2U d3r

∫

U d3r
, (17)

where rmax is the position of the maximum of the distribution. At T = 0, the distribution has

spherical symmetry and the mean quadratic radius of the distribution is given by
√

〈r2〉 = L0.

The maximum has a value of the (dimensionless) energy density equal to 16/π2 and at a

distance equal to the mean quadratic value, the dimensionless energy density is 1/π2. This

means that, initially, more than 70% of the energy is localized inside a sphere of radius L0

centred at the origin. As time evolves the mean quadratic radius of the distribution spreads out

(its value at t = L0/c or T = 1 is about 1.1 L0) and the position of the centre is at (0, 7/8, 0).

Note that the distribution is not well characterized as a sphere as time evolves.

One can also compute the Poynting vector P of the electromagnetic field, obtaining

P =
∫

E × B

µ0

d3r =
(

0,
ac

2µ0L0

, 0

)

. (18)

As can be seen, it has a single contribution along the y-axis. This explains why the maximum

of the energy density moves along this axis for the electromagnetic knot studied in this paper.

3. Relativistic motion of charges in the electromagnetic knot of the Hopf fibration

Now we apply the electromagnetic knot studied in the previous section to the following

situation. Suppose that this knot has been created in certain region of the space, so we have

at t = 0 a knot initially centred at the origin, that moves with time along the y-axis as we

discussed in the previous section. Let us assume there are free electrons with negligible initial

velocities in units of the light velocity c. We consider the evolution of these electrons under

the electromagnetic knot field.

The velocity of the electrons increases by the action of the electromagnetic field, so we

will solve the relativistic equation for the motion of single electrons [15], considered as test

particles which do not affect the value of the electromagnetic field obtained from the Hopf

fibration. The equation to be considered is

dv

dt
= −

e

m

√

1 −
v2

c2

(

E + v × B −
1

c2
v(v · E)

)

, (19)

where e = 1.6 × 10−19 C is the electron charge, and m = 9.1 × 10−31 kg is its rest mass.

Using dimensionless quantities and expressions (10) for the electromagnetic knot of the Hopf

fibration, we find

dV

dT
= −

e
√

a

πmcL0

√
1 − V 2

(A2 + T 2)3
· (QH2 − P H1 + V × (QH1 + P H2) − V(V · (QH2 − P H1)).

(20)

Different possible physical situations can be studied with equation (20) by changing the value

of the dimensionless term g = e
√

a/(πmcL0). For electrons, taking into account that the total
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Figure 2. Evolution of the position of electrons under the influence of the electromagnetic knot

of the Hopf fibration with g = 1. From left to right and top to bottom, T = 0.5, T = 1, T = 1.5.

The energy levels shown correspond to values 0.1, 0.2 and 0.3 of the density energy in a/(µ0L
4
0)

for the same times (see figure 1). The initial velocity of the electrons is V0 = 0. The electron

initial positions considered are given by R0 = (Ri , 0, 0), with Ri = ±0.1,±0.2, . . . ,±1, by

R0 = (0, Ri , 0), and by R0 = (0, 0, Ri). After T = 1.5 these electrons move almost freely. The

final values of the velocities at T = 1.5 run from Vmin = 0.5300 to Vmax = 0.8410 in units of the

light velocity c.

energy of the field is E = 2a/(µ0L0) and that the size of the knot is characterized initially by

L0, the term in equation (20) can be written as

g =
e
√

a

πmcL0

≈ 0.15

√

E

L0

, (21)

where E is measured in Joules and L0 in metres.

In figure 2, the evolution of the position of electrons can be seen when g = 1. The

initial velocity of the electrons is V0 = 0. We have taken for these electrons initial positions

along the x-, y- and Z-axis. In each axis, the dimensionless position is ±0.1,±0.2, . . . ±1.

In the figure, the electron trajectories are plotted from T = 0 up to T = 0.5 (top left), up

to T = 1 (top right) and up to T = 1.5 (bottom). We also include some energy density

7
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Figure 3. Same situation as in figure 2 with a value g = 10. From left to right and top to bottom,

T = 0.5, T = 1, T = 1.5. The energy levels shown correspond to values 0.1, 0.2 and 0.3

of the density energy in a/(µ0L
4
0) for the same times (see figure 1). The initial velocity of the

electrons is V0 = 0. The electron initial positions considered are given by R0 = (Ri , 0, 0), with

Ri = ±0.1,±0.2, . . . ,±1, by R0 = (0, Ri , 0), and by R0 = (0, 0, Ri). The final values of the

velocities at T = 1.5 run from Vmin = 0.9684 to Vmax = 0.9942 in units of the light velocity c.

levels of the electromagnetic knot at the time considered, corresponding to values 0.1, 0.2

and 0.3 in a
/(

µ0L
4
0

)

units (see the caption of figure 1 for more details). By doing so, in

figure 2 we see not only the evolution of the position of some free electrons, but also the

region in which the interaction with the electromagnetic knot (whose centre moves along

the y-axis with a velocity close to c) is more important. This fact explains some features

of the behaviour of the electron trajectories. At the beginning, up to T = 0.5, the region where

the electrons are is influenced by the high values of the knot energy density, so that the electrons

are accelerated and their trajectories are curved by the influence of the electromagnetic force.

From T = 0.5 up to T = 1, the centre of the knot has moved along the y-axis and many

electrons are now in a region where the electromagnetic density is smaller. However, the

electromagnetic force is still important so that many electrons tend to follow the motion of the

centre of the knot (a small fraction of the electrons seem to be curved towards the opposite

direction). This is also the situation from T = 1 up to T = 1.5, during which electrons reach

high values of the velocity, in the range from Vmin = 0.5300 to Vmax = 0.8410 in units of

the light velocity c. After this time, the influence of the electromagnetic knot on the electron

trajectories is smaller, and they can be considered as almost free.

8
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Figure 4. Same situation as in figures 2 and 3 with a value g = 100. From left to right and

top to bottom, T = 0.5, T = 1, T = 1.5. The energy levels shown correspond to values 0.1,

0.2 and 0.3 of the density energy in a/(µ0L
4
0) for the same times. The initial velocity of the

electrons is V0 = 0. The electron initial positions considered are given by R0 = (Ri , 0, 0), with

Ri = ±0.1,±0.2, . . . ,±1, by R0 = (0, Ri , 0), and by R0 = (0, 0, Ri). The final values of the

velocities at T = 1.5 run from Vmin = 0.9870 to Vmax = 0.9999 in units of the light velocity c.

In figure 3, the evolution of the position of electrons is studied when g = 10. The

initial velocity of the electrons is V0 = 0, and the initial positions in each axis are given

by ±0.1,±0.2, . . . ± 1 in units of the knot size L0 as before. As in figure 2, the electron

trajectories are plotted in figure 3 from T = 0 up to T = 0.5 (top left), up to T = 1 (top right)

and up to T = 1.5 (bottom), and we include some energy density levels of the electromagnetic

knot at the time considered, corresponding to the values 0.1, 0.2 and 0.3 in a
/(

µ0L
4
0

)

units.

Up to T = 0.5, the electrons get higher acceleration and their trajectories are more curved by

the influence of the electromagnetic force than in the case of g = 1 (figure 2). From T = 0.5

up to T = 1, all the electrons tend to follow the motion of the centre of the knot, a situation

much clearer from T = 1 up to T = 1.5. The final velocities of these electrons are in the

range from Vmin = 0.9684 to Vmax = 0.9942 in units of the light velocity c.

9
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In figure 4, the evolution of the position of electrons can be seen when g = 100. The

initial velocity and initial position of the electrons are the same as in the cases g = 1 (figure 2)

and g = 10 (figure 3). As in previous cases, electron trajectories are plotted in figure 4 from

T = 0 up to T = 0.5 (top left), up to T = 1 (bottom) and up to T = 1.5 (top right), and

we include some energy density levels of the electromagnetic knot at the time considered,

corresponding to values 0.1, 0.2 and 0.3 in a
/(

µ0L
4
0

)

units. The global behaviour of

the electron trajectories is very similar to the case in which g = 10, but now the electrons

are even more accelerated and their trajectories are even more curved by the influence of the

electromagnetic force. All the electrons clearly tend to follow the motion of the centre of the

knot along the y-axis, with final velocities in the range from Vmin = 0.9870 to Vmax = 0.9999

in units of the light velocity c.

4. Conclusions

In this paper we have considered the classical relativistic motion of charged particles in a

knotted electromagnetic field. We have seen how to construct electromagnetic knots from

maps between the three-sphere and the two-sphere. In the particular case of the Hopf map,

whose fibres are mutually linked, we have written the expression for the electromagnetic field.

This is a solution of the Maxwell equations in vacuum, such that any pair of electric lines is a

link and any pair of magnetic lines is a link. We have considered some properties of this field,

in particular the electromagnetic energy density. We have seen that a major part of the energy

density of the knot is, at t = 0, localized into a sphere whose radius is the mean quadratic

radius of the energy density distribution. As time evolves, the spherical symmetry is broken

and the mean quadratic radius of the distributions spreads out.

We have considered the relativistic motion of electrons (considered as point particles)

in the electromagnetic field of the Hopf map. We have computed the trajectories of the

electrons starting with zero initial velocities, and we have seen that these electrons are strongly

accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that

depends on the knot size.

Finally we consider that a deeper understanding of the interaction between electromagnetic

knots and test particles could be useful to design experiments to produce knots in the

laboratory.
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