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Abstract
An electromagnetic knot is an electromagnetic field in vacuum in which the
magnetic lines and the electric lines coincide with the level curves of a pair of
complex scalar fields ϕ and θ (see equations (A.1), (A.2)). When electro-
magnetism is expressed in terms of electromagnetic knots, it includes
mechanisms for the topological quantization of the electromagnetic helicity,
the electric charge, the electromagnetic energy inside a cavity and the mag-
netic flux through a superconducting ring. In the case of electromagnetic
helicity, its topological quantization depends on the linking number of the field
lines, both electric and magnetic. Consequently, to find solutions of the
electromagnetic knot equations with nontrivial topology of the field lines has
important physical consequences. We study a new class of solutions of
Maxwellʼs equations in vacuum Arrayás and Trueba (2011 arXiv:1106.1122)
obtained from complex scalar fields that can be interpreted as maps →S S3 2,
in which the topology of the field lines is that of the whole torus-knot set. Thus
this class of solutions is built as electromagnetic knots at initial time. We study
some properties of those fields and consider if detection based on the energy
and momentum observables is possible.

Keywords: torus knots, electromagnetism, helicity, non-null fields
PACS numbers: 03.50.De, 42.25.Ds

(Some figures may appear in colour only in the online journal)

Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 48 (2015) 025203 (14pp) doi:10.1088/1751-8113/48/2/025203

1751-8113/15/025203+14$33.00 © 2015 IOP Publishing Ltd Printed in the UK 1

mailto:manuel.arrayas@urjc.es
mailto:joseluis.trueba@urjc.es
http://arXiv.org/abs/1106.1122
http://dx.doi.org/10.1088/1751-8113/48/2/025203
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8113/48/2/025203&domain=pdf&date_stamp=2014-12-11
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8113/48/2/025203&domain=pdf&date_stamp=2014-12-11


1. Introduction

There has been some interest in the understanding of knotted electromagnetic fields in
vacuum [2–4], i.e. with some kind of linkage in the field lines, as well as knotted structures in
fluids [5]. These configurations could be important for the study of the helicity exchange
mechanism [6], for the stability of electromagnetic fields [7] which may play a role in particle
theory [8–11], or even in certain asymptotic limits of string theory [12]. More recently for the
covariant and non-abelian generalizations of the magnetic helicity [13] those fields could play
a role. Also there are examples in nature where the magnetic fields created by planets and
stars present also toroidal structure and nontrivial topology of the field lines [14]. In the
laboratory we find such electromagnetic fields in toroidal geometries for plasma confinement
[15] and in nuclear magnetic resonance devices [16]. There is evidence that injection or
ejection of magnetic helicity from a plasma often affects its dynamics and stability [17]. For
example the helicity content of magnetically confined plasmas in spheromaks [18] must be
sustained somehow via helicity injection. On the other hand, too much magnetic helicity
content can lead to violent disruptions like in the solar corona [19].

However important they are for the test of new theories and modeling, not many exact
solutions of Maxwell equations in vacuum are known showing nontrivial topology. Known
fields are based in the Hopf fibration [3, 6, 20–26]. Irvine and Bouwmeester have decom-
posed those known fields into vector spherical harmonics and, from this decomposition,
produced new fields in which the helicity was conserved in time and that corresponded to all
possible torus knots [2]. In their work the field lines changed topology and unraveled while
evolving in time [27]. Recently Kedia et al [4] used Batemanʼs construction to build null
electromagnetic fields in vacuum [28, 29]. They have obtained a complete class of null
electromagnetic fields in which the electric and magnetic field lines are grouped into knotted
and linked tori, nested one inside the other, with torus knots at the core of the foliation.

In the present work, we study a class of non-null solutions of Maxwellʼs equations in
vacuum covering the topology of the whole torus knots set [1]. By having the topology of the
torus knots set we mean that initially all the magnetic lines and all the electric lines are linked
torus knots and, moreover, when time evolves we can find numerically field lines knotted. In
figure 1 it can be seen as an example the evolution of an initial configuration for the elec-
tromagnetic field in which all the field lines are linked (4, 3) torus knots. It will be shown that
the initial topology of the field lines determines the evolution of the field, and the value of
quantities like the energy (18), the momentum (19) and the magnetic and electric helicities
(11), (12).

The outline of the paper is the following. We first introduce the new solutions. although
the more mathematical details are left for an appendix. Then we calculate some physical
properties of the solutions, such as the Lorentz invariants, the electric and magnetic helicities,
the energy and the linear momentum contained in those fields together with some specific
dynamical quantities such as the Poynting vector. We discuss how they can be used for
detection of such fields in the laboratory. The argument is that the energy and momentum are
compatible observables, and the relation provided by (24) will be different depending on the
topology of the created light as (25) shows. We proceed by studying some particular cases of
constant helicities and finally end with some conclusions.
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2. Non-null electromagnetic fields with knotted field lines

It is convenient to introduce dimensionless coordinates X Y Z T( , , , ), related to the physical
ones x y z t( , , , ) in the SI of units by =X Y Z T x y z ct L( , , , ) ( , , , ) 0, being c the speed of
light. We will also use the relation = + + = + + =r L x y z L X Y Z R( )2

0
2 2 2 2

0
2 2 2 2 2,

where L0 is a constant with dimensions of length that can be considered to be the char-
acteristic size of the knot (L0 is related to the mean quadratic radius of the energy distribution
of the electromagnetic field [3]). Thus, we have found that Maxwell equations in the vacuum
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Figure 1. Time evolution of field lines for the (4, 3) torus knot. We plot two magnetic
(up) and electric (down) lines for T = 0, T = 0.015 and T = 0.02 (left to right). Lines are
obtained numerically by integrating expressions (2), (3) of the magnetic and the electric
fields with respect to a curve parameter. At T = 0 all the field lines are linked (4, 3)
torus knots and the linking number is nm = 12. When >T 0 we find (4, 3) linked torus
knots.
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where the quantities A, P, Q are defined by

= − +
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where n m s l( , , , ) are dimensionless positive integer numbers and a is a constant introduced
so that the magnetic and electric fields have correct dimensions. In the International System of
Units, that will be used in this work, a can be expressed as a pure number times the Planck
constant ℏ times the speed of light c times the vacuum permeability μ0. This means that the
constant a is related to the strength of the electromagnetic field. We will return later to that.

By construction, the electric field lines at a particular instant of time (t = 0) are linked
torus knots (l, s) and the same for the magnetic field lines, which are linked torus knots of
indexes (n, m). The mathematical details are left for the appendix.

3. Special properties of the torus-knotted fields

The choice of the positive integer numbers n m l s, , , determines some properties of the
knotted electromagnetic fields. We start with the properties related to the Lorentz invariants of
the electromagnetic fields associated to any electromagnetic field in vacuum. These invariants
are E B· and −E c B2 2 2, that can also be obtained from the square of the Riemann–
Silberstein complex vector = + cF E Bi [30]. From equations (2), (3)

π
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For our class of knotted electromagnetic fields, with = − +A R T( 1) 22 2 , the Lorentz
invariants turns out to be
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The class of knotted electromagnetic fields has the following properties:

• Property C1. If the positive integer numbers n m l s, , , are equal, i.e. satisfy the condition
= = =n m l s, then =E B· 0 and − =E c B 02 2 2 . In terms of the Riemann–

Silberstein vector F defined in (8), =F F· 0.
• Property C1′. If the condition = = =n m l s is not fulfilled, then ≠E B· 0 and

− ≠E c B 02 2 2 .

The time behaviour of the magnetic and electric helicities of these fields can be exactly
computed. The result, in terms of the dimensionless parameter =T ct L0, is
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μ

=

= + + − − +

+

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥( )

h t
c

r

a
mn ls mn ls

T T

T

A B( )
1

2
d ·

4
( ) ( )

1 6

1
, (11)

m
0

3

0

2 4

2 4

∫ε

μ

=

= + − − − +

+

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥( )

h t
c

r

a
mn ls mn ls

T T

T

C E( )
2

d ·

4
( ) ( )

1 6

1
, (12)

e
0 3

0

2 4

2 4

where μ0 is the vacuum permeability, ε0 is the vacuum permittivity, and A and C are vector
potentials for the magnetic and electric fields, so that = ×B A and = ×E C. The
constant μa c(2 )0 is a unit of helicity. Knowing the initial value of the helicities and their time
derivatives, the helicities can be easily obtained. The initial values are given in the appendix
(see (A.5), (A.6)) using topological arguments. The time derivatives of the magnetic and
electric helicities are given by

∫μ
= −h
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r E B

d

d

1
d · , (13)m

0

3

∫μ
=

h

t c
r E B

d

d

1
d · . (14)e

0

3

So for this class of knotted electromagnetic fields we have
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• Property C2. If, at t = 0, we have =h hm e, then for every time we have =h hm e and both
helicities are constant. That means that =mn ls, thus

∫ ∫= =r c rF F E Bd Im ( · ) 2 d · 0. (15)3 3

As a consequence, the magnetic and electric helicities will be constant during the time
evolution of the fields.
• Property C2′. If, at t = 0, we have ≠h hm e, then both helicities are not constant but, for
large T, both reach the same value (due to a mechanism called exchange of helicities
in [6]).

Even if the magnetic and electric helicities may change with time, the electromagnetic
helicity

= +h h h , (16)em m e

is a constant of the motion for any electromagnetic field in vacuum [31]. Thus, for the
electromagnetic fields given by equations (A.1), (A.2) at t = 0, the electromagnetic helicity
satisfies

μ
= +h

a

c
nm ls

2
( ), (17)em

0

and this quantity is constant during time evolution since it is conserved by Maxwellʼs
equations in vacuum.

Another important feature of these solutions is the finite value of the electromagnetic
energy. The energy is related to the integer numbers n, m, l, s, that characterize the complex
scalar fields ϕ and θ by

∫ ε
μ μ

= + = + + +
⎛
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⎟⎟ ( )r

E B a

L
n m l sd

2 2 2
. (18)3 0

2 2

0 0 0

2 2 2 2

The linear momentum of these knotted solutions can also be obtained from the Poynting
vector μ×E B 0 and results

∫ ε
μ

= × = +a

c L
ln msp E B u

2
( ) . (19)y0

0 0

A way to picture the evolution of these fields is to plot Poynting vectors at some points in
space at different times. In figure 2, we see the behaviour of these electromagnetic fields for
instants of time = − −T 2, 1, 0, 1, 2 (where =T ct L0). There is a focusing effect of the
energy density flux at T = 0. In the figure we have plotted the case =n m( , ) (3, 4) for the
initial magnetic field lines, and =l s( , ) (2, 3) for the initial electric field lines. The magnetic
and electric fields are given by equations (2) and (3) with n = 3, m = 4, l = 2, s = 3.

There is something else about the nontrivial topological solutions of the Maxwell
equations that we have found. In general, using vector identities, it is easily proved that

∫ ∫ε
ε

μ
× ⩽ +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟r r

E B
E Bd d

2 2
. (20)3

0
3 0

2 2

0

The equality holds only when the field transport energy at the speed of light (see [32]), being
the velocity at which the energy is transported defined as the time derivative of
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∫
∫
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i.e. the equality for expression (20) is obtained when

= < > =v
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However, from expressions (18) and (19), we always has the strict inequality
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, (23)

being =p p| |. Thus we can attribute a rest energy to our electromagnetic field given by the
relation

= + p c . (24)2 2 2
0
2

Taking into account results (18) and (19) for the energy and linear momentum of these
knotted electromagnetic structures, we can find 0
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Figure 2. Time evolution of the Poynting vector μ×E B 0 for the electromagnetic field

given by equations (2), (3) in the case in which m = 4, n = 3, s = 3, l = 2. We plot the
Poynting vectors at some points of space for = −T 2, = −T 1, T = 0, T = 1 and T = 2
(left to right, up to bottom), where =T ct L0. A focusing effect of the energy density
flux is observed at T = 0.
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In this way, one can see that this rest energy depends on the size of the knot, given by L0,
and on the constant a included in the definition of this kind of knotted electromagnetic
structures (A.1), (A.2), which determines the energy stored in the fields. But also on the
integer numbers n, m, l, s which determine the topological nature of the magnetic and electric
torus knots. This quantity could be helpful in the search for knotted light in the laboratory.
The energy and momentum are compatible observables, so in principle, they can be measured
at the same time. The relation provided by (24) should be different depending on the topology
of the created light as (25) shows.

In the model of electromagnetic knots, the constant a which appears in the amplitude
definitions of the electric and magnetic fields is undetermined, but there is a natural way of
relating it to other physical constants by considering the particle meaning of electromagnetic
helicity [26]. The vector potential A can be written as a superposition of circularly polarized
waves as it is done in quantum electrodynamics [33], so the electromagnetic helicity reads
[25]

∫= − ( )h a a a ak k k k k¯ ( ) ( ) ¯ ( ) ( ) d , (26)em R R L L
3

where a k( )R and a k( )L are the Fourier components of A in circularly polarized waves basis,
and a k¯ ( )R and a k¯ ( )L their complex conjugates. In QED, a k( )R is interpreted as a destruction
operator of photonic states with energy ck , linear momentum k and spin  kk , while the
function āR becomes the creation operator +aR of such states. Analogously, a k( )L is
interpreted as a destruction operator of photonic states with energy ck , linear momentum k
and spin − kk , and +aL is the corresponding creation operator. So that the right hand side of
equation (26) becomes the helicity operator, that is the difference between the numbers of
right and left handed photons. Thus

= − ( )h N N , (27)em R L

where NR and NL are the number of right and left handed photons contained in the field. This
equation shows a close relation between the wave and particle aspects of the helicity.

When (27) is compared to (17), a particular value for the constant a is μ= a c 0 since, in
this case, one obtains the relation − =N N integerR L for the expression of the difference
between right and left handed photons included in the knotted electromagnetic field.

In macroscopic situations, as in plasma physics configurations or astrophysical contexts,
the meaning of the helicity is not related to the photon content of the field at all, only to the
linkage of the field lines. The constant a can take any other value to give the right units.

4. Study of the field lines of knotted electromagnetic fields with constant
helicities (l = n and s = m)

In the previous section we have seen how to construct analytically different electromagnetic
fields in vacuum for which, at t = 0, all the magnetic lines and all the electric lines are linked
torus knots in the space R3, except a zero-measure set. For this fields, at t = 0 all the magnetic
lines are the same torus knot, and all the electric lines are the same torus knot. But in general
the kind of torus knot corresponding to the magnetic lines may be different from the kind of
torus knot corresponding to the electric lines.

Next we are going to restrict ourselves to the case in which, at t = 0, both the magnetic
and the electric lines are the same kind of torus knot. This means that, in equations (2)–(7), we
take l = n and s = m. Consequently, the fields satisfy properties ′C1 and C2, so that the
magnetic field is not orthogonal to the electric field but the magnetic and the electric helicities
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are equal and constant in time. In [2], a different method to construct these kind of fields was
proposed.

To see how these solutions give different torus knots, we plot in figure 3 some magnetic
and electric lines for the particular case n = 3, m = 2. At T = 0 the lines are linked trefoils and
the linking number is ϕ θ= = =H H nm( ) ( ) 6. When >T 0 we also find a set of linked
trefoils, although not all the lines are linked trefoils at >T 0. In figure 1 we see the behaviour
of magnetic and electric lines in the case n = 4, m = 3. At T = 0, all the lines are linked (4, 3)
torus knots and the linking number is =nm 12. For >T 0 we find lines with the same
topology. The same is done in figure 4 with n = 5, m = 2 and linking number 10. In all these
figures it is clear that plotted curves are linked knots. When T = 0, these are the only kind of
curves that can be found since these lines are level curves of the scalar fields (A.3), (A.4). As
T increases, numerical evidence prevent us to rule out the existence of some open field lines
together with the knotted closed ones. A similar behaviour was found also numerically in [2].

In the special case in which we set solutions of the equations (3)–(7) for which
n = m = l = s, we have a situation in which properties C1 and C2 hold. These particular
solutions, called Hopf–Rañada electromagnetic knots [2, 3, 20, 21, 24, 25], are based on the
Hopf fibration. They constitute a kind of basis for general electromagnetic fields in vacuum
with nontrivial topology of the field lines.

Figure 3. Time evolution of field lines for the (3, 2) torus knot or trefoil. We plot two
magnetic (up) and electric (down) lines for T = 0, T = 0.015 and T = 0.02 (left to right).
Lines are obtained numerically by integrating expressions (2), (3) of the magnetic and
the electric fields with respect to a curve parameter. Numerical integration shows that at
T = 0 all the magnetic lines (and the electric lines) are trefoils except two lines (as
always occurs in torus knots): the straight line X = Y = 0 and the circle + =X Y 12 2 .
Moreover, the trefoils are linked to each other so that the linking number is nm = 6.
When >T 0 we find numerically magnetic (and electric) lines that are linked trefoils.
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5. Conclusions

In this work we have studied a class of knotted electromagnetic fields. The solutions found are
such that, at a given initial time, they satisfy that the magnetic lines and the electric lines are
linked torus knots and they include as particular cases the Hopf–Rañada electromagnetic
knots. Expressions (2)–(7) are the main results of this paper.

We have found some properties satisfied by these solutions, as the values of the Lorentz
invariants and the magnetic and electric helicities. The Lorentz invariants associated to these
solutions depend on the position and time, and the magnetic and electric helicities also depend
on time. One of the intriguing properties they have is that, when time is large, the magnetic
and electric helicities become equal. This is what is called the helicity exchange mechanism
discovered in [6].

An energy and momentum specific relations can be associated to each one of these
solutions. One might consider to detect these electromagnetic fields by measuring the energy–
momentum content of the fields. That is related to the topology of the electromagnetic field
lines.

We have computed numerically the field lines corresponding to cases in which the
magnetic and electric helicities are constant in time. These are situations in which the initial
electric lines and the initial magnetic lines are the same kind of torus knots. When time
evolves, we have observed in the numerical computations of the field lines some curves with
the topology of the given torus knot. Since the magnetic and electric helicities of these

Figure 4. Time evolution of field lines for the (5, 2) torus knot. We plot two magnetic
(up) and electric (down) lines for T = 0, T = 0.015 and T = 0.02 (left to right). Lines are
obtained numerically by integrating the explicit time dependent expressions (2), (3) of
the fields respect to a curve parameter. At T = 0 all the field lines are linked (5, 2) torus
knots and the linking number is nm = 10. When >T 0 we find (5, 2) linked torus knots.
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configurations are average measures of the linking number of the field lines and they are equal
and conserved, it can be argued that some kind of nontrivial topology of these solutions can
be found at any time.
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Appendix. Construction of a class of electromagnetic fields with knotted field
lines

Torus knots are knotted curves lying on the surface of a torus. Any torus knot is defined by
two coprime integer numbers (n, m) in such a way that the curve winds n times around a circle
inside the torus and m times around a line through the hole in the torus.

Here is a method to find some knotted electromagnetic fields in vacuum (see [26]), i.e.
exact solutions of Maxwellʼs equations in empty space in which the magnetic lines and/or the
electric lines are knotted curves.

Let ϕ r( ), θ r( ), two complex scalar fields that depend on the position r in the physical
space R3. In the cases that we are going to study in this work, both scalar fields can be
considered as maps ϕ θ →S S, : 3 2 after identifying the physical space R3 with S3 (doing so,
it is assumed that both scalars have only one value at infinity) and the complex plane with S2.
These identifications can be done using stereographic projections and, as we will see later,
have important consequences in the solutions of Maxwellʼs equations that we are going to
obtain. However, a similar formalism could be applied to other possibilities in which both
scalars cannot be considered as maps from S3 to S2. For example, this formalism could be
used to construct electromagnetic fields in vacuum from the scalars considered in [34] to
implement optical beams.

If ϕ (or θ) is a map from S3 to S2, then the preimage of any point in S2 is a closed curve in
S3. Moreover, the linking number of a pair of curves in S3 (that are preimages of two distinct
points in S2) is the same for all the pairs of curves (except at most for a zero-measure set, a
property common to torus knots). The linking number of each pair of curves is called the
Hopf invariant ϕH ( ) of the map ϕ and it is an integer number.

We will impose that, at some initial time t = 0, the level curves of the complex scalar
fields ϕ θ( , ) coincide with the magnetic and electric lines respectively, each one of these lines
being labelled by the constant value of the corresponding scalar. This can be simply done by
constructing the magnetic and electric fields at t = 0 as

π
ϕ ϕ

ϕϕ
= ×

+

 

( )
a

B r( , 0)
2 i

¯

1 ¯
, (A.1)

2

π
θ θ

θθ
= ×

+

 

( )
a c

E r( , 0)
2 i

¯

1 ¯
. (A.2)

2

The notation ϕ̄ means the complex conjugate of ϕ and i is the imaginary unit. Note that, using
vector identities, the expressions (A.1), (A.2) are such that they satisfy = B· 0 and
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= E· 0 for any scalar fields ϕ and θ, which is a necessary condition for B r( , 0) and
E r( , 0) to be admissible initial values of an electromagnetic field in vacuum.

The construction given in equations (A.1), (A.2), along with the fact that ϕ and θ are
stereographic projections of maps from S3 to S2, assures that all pairs of lines of the field
B r( , 0) are linked, and that the linking number is the same for all the pairs and it is given by
the Hopf index ϕH ( ) of the map ϕ. Similarly, all pairs of lines of the field E r( , 0) are linked,
the linking number of all pairs of lines is the same and it is given by the Hopf index θH ( ) of
the map θ. Thus, at t = 0, the linkage of all the magnetic and the electric lines is set by this
construction.

Our starting point is the following choice of complex scalar fields

ϕ = +

+ −( )( )
X Y

Z R

( i )

i 1 2
, (A.3)

n

m

( )

2
( )

θ = +

+ −( )( )
Y Z

X R

( i )

i 1 2
, (A.4)

l

s

( )

2
( )

where n, m, l and s are positive integer numbers. These fields are related to the Seifert
fibrations [35]. The main difference is that, in equations (A.3), (A.4), the notation η n( ), η being
a complex number, means to leave the modulus of η invariant while the phase of η is
multiplied by n.

Level curves of the complex scalar field ϕ given by expression (A.3) are (n, m) linked
torus knots. This means that if we choose any complex number, say +1 i, the equation
ϕ = +1 i gives a curve in the space R3, and this curve is a (n, m) torus knot. If we choose any
other value, say −4 7i, the equation ϕ = −4 7i gives another (n, m) torus knot. The tangent
vectors of such curves are parallel to ϕ ϕ× Re ( ) Im ( ). Moreover, both curves are
linked and their linking number is, precisely, the Hopf index of ϕ, that is ϕ =H nm( ) in this
case. This occurs for any level curves of ϕ. Since level curves of ϕ coincide, through
equation (A.1), with magnetic lines at t = 0, we can say that any pair of magnetic lines at t = 0
is a linked pair of (n, m) torus knots, and that the linking number is nm. The same can be said
about the complex scalar field θ given by equation (A.4) and the electric field at t = 0 given by
equation (A.2), so that any pair of electric lines at t = 0 is a linked pair of (l, s) torus knots and
the linking number is θ =H ls( ) . To solve Maxwellʼs equations in vacuum with the initial
conditions given by expressions (A.1), (A.2), Fourier analysis can be used to get the exact
solutions.

The magnetic helicity hm of these fields, which is a measure of the mean value of the
linkage of the magnetic lines [36], and the electric helicity he, have initial values related,
through equations (A.1), (A.2), to the Hopf indices of ϕ and θ, respectively. This is only true
when (i) the magnetic and the electric fields have the form given by equations (A.1), (A.2),
and (ii) the scalar fields ϕ and θ are stereographic projections of maps from S3 to S2.
Consequently, the initial values of the magnetic and the electric helicities of these electro-
magnetic fields are given by

μ
ϕ= =h t

a
H( 0)

2
( ), (A.5)m

0

μ
θ= =h t

a
H( 0)

2
( ), (A.6)e

0
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where μ0 is the vacuum permeability, ε0 is the vacuum permittivity, and A and C are vector
potentials for the magnetic and electric fields, so that = ×B A and = ×E C. The
constant μa c(2 )0 is a unit of helicity. For ≠t 0, equations (A.5), (A.6) are not true. This is
due to the fact that the linkage of the field lines may change during time evolution (see [6] for
an example, in which this kind of change was presented).

However, there is also an important case, called the Rañada–Hopf electromagnetic knot,
in which n = m = l = s = 1, where the magnetic and electric helicities take the values given by
equations (A.5), (A.6) for any time. In this case, the linkage of magnetic or electric lines is
conserved in time. It has been analytically proof that all the magnetic and electric lines remain
closed and linked for any value of T since there is an explicit expression for the scalar fields ϕ
and θ of equations (A.1), (A.2) for any time. These time dependent expressions were firstly
found in [25] and they are

ϕ = − + + −
+ + − −

A X T Z A Y T A

A Z T X A A T Y

( ) i( ( 1))

( ) i( ( 1) )
, (A.7)

θ = + − + +
− + − −

A Y T A A Z T X

A X T Z A A T Y

( ( 1)) i( )

( ) i( ( 1) )
, (A.8)

where A is given in equation (4). The time evolution of both scalars is smooth and this implies
that the field lines remain closed and the topology is conserved.

In the general case with different values of the integer numbers n, m, l, s, it is not possible
to find the scalar fields ϕ and θ for >T 0.
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