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Abstract
In this paper we study the effects of photoionization processes on the
propagation of both negative and positive ionization fronts in streamer
discharge. We show that negative fronts accelerate in the presence of
photoionization events. The appearance and propagation of positive
ionization fronts travelling with constant velocity is explained as the result
of the combined effects of photoionization and electron diffusion. The
photoionization range plays an important role in the selection of the velocity
of the ionization front as we show in this work.

1. Introduction

Ever since Raether [1] used cloud chamber photographs to
study the creation and propagation of streamer discharges,
there has been considerable effort to understand the underlying
processes driving them [2–4]. A streamer discharge is
considered to be a plasma channel which propagates in a gas.
The discharge propagates by ionizing the medium in front of its
charged head due to a strong field induced by the head itself.
This kind of discharge produces sharp ionization waves that
propagate into a non-ionized gas, leaving a non-equilibrium
plasma behind.

Raether himself realized that Townsend’s mechanism,
which takes into account the creation of extra charge by
impact ionization [5], was not enough to explain the velocity
of propagation of a streamer discharge. He pointed to
photoionization as the process which enhances the propagation
of the streamer. The head of the discharge is a strong source of
highly energetic photons. Photons, emitted by the atoms that
previous collisions have excited, initiate secondary avalanches
in the vicinity of the head which move, driven by the local
electric field increasing the velocity of propagation of the front.

In this paper we study the role played by photoionization
in the propagation of both negative and positive ionization
fronts. We take a model widely used in numerical simulations
and find an effective simplified model. We discuss how this
simplified model retains all the physics of streamer discharges
including photoionization. The photoionization is modelled as
a nonlocal source term. We take the case of air and consider
emissions from nitrogen molecules. Then we consider the sole
role of photoionization in negative planar shock fronts. Finally
we analyse the case of positive planar fronts and propose a

mechanism for their formation and propagation. We end with
an analysis of results and conclusions.

2. Model for a streamer discharge

Here we consider a fluid description of a low-ionized plasma
based on kinetic theory. The balance equation for the particle
density of electrons Ne is the lowest moment of the Boltzmann
equation,

∂Ne

∂τ
+ ∇R · (NeUe) = Se, (1)

where R is the position vector, τ is time, ∇R is the gradient in
configuration space, Ue(R, τ ) is the average (fluid) velocity of
electrons and Se is the source term, i.e. the net variation rate of
the number of electrons per unit volume as a result of collisions.
It is convenient to define the electron current density Je(R, τ ) as

Je(R, τ ) = Ne(R, τ )Ue(R, τ ), (2)

so that the balance equation can also be written as

∂Ne

∂τ
+ ∇R · Je = Se. (3)

The same procedure can be done, in principle, for positive (Np)
and negative (Nn) ion densities to give

∂Np

∂τ
+ ∇R · Jp = Sp, (4)

∂Nn

∂τ
+ ∇R · Jn = Sn, (5)

where Jp,n are the current densities of positive and negative
ions, respectively, and Sp,n are source terms. Conservation of
charge has to be imposed in all processes, so that the condition

Sp = Se + Sn, (6)
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holds for the source terms. Some physical approximations can
now be done in order to simplify the balance equations (3)–(5).
The first one is to assume that the electron current Je is approxi-
mated as the sum of a drift (electric force) and a diffusion term,

Je = −µeENe − De∇RNe, (7)

where E is the total electric field (the sum of the external elec-
tric field applied to initiate the propagation of an ionization
wave and the electric field created by the local point charges)
and µe and De are the mobility and diffusion coefficient of
the electrons. Note that, as the initial charge density is low
and there is no applied magnetic field, the magnetic effects in
equation (7) are neglected. With respect to positive and neg-
ative ions, on time-scales of interest for the case of streamer
discharges, the ion currents can be neglected because they are
more than two orders of magnitude smaller than the electron
ones [6, 13], so we will take

Jp = Jn = 0. (8)

Consider now the processes that give rise to the source terms
Se,p,n.

(i) The first of these processes is the creation of free electrons
by impact ionization: an electron is accelerated in a strong
local field, collides with a neutral molecule and ionizes it.
The result is the generation of new free electrons and a
positive ion. The ionization rate is given by

S i
e = S i

p = νiNe, (9)

where the ion production rate νi depends on the local
electric field, the density of the neutral particles of the
gas and their effective ionization cross sections.

(ii) The second possible process is attachment: when an
electron collides with a neutral gas atom or molecule,
it may become attached, forming a negative ion. This
process depends on the energy of the electron and the
nature of the gas [8]. The attachment rate can be written
as

Sa
n = −Sa

e = νaNe, (10)

where νa is the attachment rate coefficient. Note that the
creation of negative ions due to these processes reduces
the number of free electrons, so Sa

e is negative.
(iii) There are also two possible kinds of recombination

processes: a free electron with a positive ion and a negative
ion with a positive ion. The recombination rate is

Sep
e = Sep

p = −βepNeNp, (11)

for electron–positive ion recombination, and

Snp
p = Snp

n = −βnpNnNp, (12)

for positive ion–negative ion recombination, βep and βnp

being the recombination coefficients, respectively.
(iv) Finally, we can include photoionization: photons created

can interact with a neutral atom or molecule, producing a
free electron and a positive ion. Models for the creation
rate of electron–positive ion pairs due to photoionization
are non-local. This rate will be here denoted by

Sph
e = Sph

p = Sph. (13)

Taking into account the expressions (7) and (8) for the cur-
rent densities, and equations (9)–(13) for the source terms, we
obtain a deterministic model for the evolution of the streamer
discharge,

∂Ne

∂τ
= ∇R · (µeENe + De∇RNe) + νiNe

− νaNe − βepNeNp + Sph, (14)

∂Np

∂τ
= νiNe − βepNeNp − βnpNnNp + Sph, (15)

∂Nn

∂τ
= νaNe − νbetaNnNp. (16)

In order for the model to be complete, it is necessary to give
expressions for the source coefficients ν, the electron mobility
µe, the diffusion coefficient De and the photoionization source
term Sph. Finally, we have to impose equations for the evolu-
tion of the electric field E . This evolution of the electric field
is given by Poisson’s equation,

∇R · E = e

ε0
(Np − Nn − Ne), (17)

where e is the absolute value of the electron charge, ε0 is the
permittivity of the gas, and we are assuming that the absolute
value of the charge of positive and negative ions is e. The
model given by (14), (15) and (16), together with (17), has
been studied numerically in the literature [9]. There are other
works where the electrical current due to ions (8) is taken into
account but not photoionization [12].

3. A simplified model

In this section we will simplify the model given by equations
(14)–(16). In order to be specific and fix ideas we shall consider
the case of air. In [9], some data are presented for the ionization
coefficients and the photoionization source term. Using these
data we shall see that one can neglect the quadratic terms
involving the coefficients βep and βnp since they are about two
orders of magnitude smaller than νi. The same can be said
about the terms involving the coefficient νa. First we write
equations (14)–(16) as

∂Ne

∂τ
= ∇R · (µeENe + De∇RNe)

+ (νi − νa − βepNp)Ne + Sph, (18)
∂Np

∂τ
= (νi − βepNp)Ne − βnpNnNp + Sph, (19)

∂Nn

∂τ
= νaNe − βnpNnNp. (20)

In these equations, and using the data in [9] (figure 1 and
table 2), the term νi is of the order of 1010 s−1 for large
electric fields, νa is about 108 s−1 and βep and βnp are about
10−13 m3 s−1. Moreover, Np is of the same order of Ne. Then,
in equation (20), in the stationary regime when the particle
densities reach the saturation values, one has Nn ∼ νa/βnp ∼
1021 m−3. So that it follows from equation (19) that, in the
stationary regime, the term βnpNnNp ∼ 108 Np is two orders
of magnitude smaller than the term νiNe ∼ 1010 Ne. Hence the
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terms νaNe and βnpNnNp can safely be neglected. The model
then reads

∂Ne

∂τ
= ∇R · (µeENe + De∇RNe)

+ (νi − βepNp)Ne + Sph, (21)

∂Np

∂τ
= (νi − βepNp)Ne + Sph. (22)

In order to neglect the term βepNeNp by comparison with
the term νiNe, it is necessary that Np (and then Ne) satisfies
Np � νi/βep ∼ 1023 m−3. To see that it is the case, we use the
Poisson equation (17) to write equation (21), without the term
βepNeNp, as

∂Ne

∂τ
− µeE · ∇RNe − De∇2

RNe

=
(

νi + µe
e

ε0
(Np − Ne)

)
Ne + Sph. (23)

From this expression, looking at its RHS, we can see that, while
Sph has a small effect, the total populations of both ions and
electrons, Ne, can grow only up to a saturation value at which
νi + µe

e
ε0

(Np − Ne) = 0, i.e.

Ne − Np � νi

µee/ε0
∼ 1020 m−3, (24)

at all times. Therefore, neither Np nor Ne reach values close
to 1023 m−3, and all the assumptions which led to neglect of
βepNeNp are justified. Our simplified model will be

∂Ne

∂τ
= ∇R · (µeENe + De∇RNe) + νiNe + Sph, (25)

∂Np

∂τ
= νiNe + Sph. (26)

Let us remark that the orders of magnitude deduced for Ne and
Np coincide with those found in full numerical simulations by
Liu and Pasko [9].

4. The photoionization term

In this section we will write down an explicit form of the
photoionization source term. In our study on the effects of
photoionization on the evolution of planar ionization fronts in
air we consider that emissions from N2 molecules can ionize
O2 molecules. The photoionization rate, due to the fact that
the number of photons emitted is physically proportional to
the number of ions produced by impact ionization, is written
as the following non-local source term [9, 10],

Sph(R) = S0

∫
νi(R′)Ne(R′)Kph(|R − R′|) d3R′, (27)

where S0 is given by

S0 = 1

4π

pq

p + pq
ξ

(
ν∗
νi

)
1

ln (χmax/χmin)
. (28)

In this expression, pq is the quenching pressure of the
single states of N2, p is the gas pressure, ξ is the

average photoionization efficiency in the interval of radiation
frequencies relevant to the problem, ν∗ is the effective
excitation coefficient for N2 state transitions from which
the ionization radiation comes out (we take ν∗/νi to be a
constant) and χmin and χmax are, respectively, the minimum
and maximum absorption cross sections of O2 in the relevant
radiation frequency interval. The kernel Kph(|R − R′|) is
written as [11]

Kph(R) = exp (−χ1R) − exp (−χ2R)

R3
, (29)

in which χ1 = χminpO2 and χ2 = χmaxpO2 , so that χ1 < χ2.
For the ionization coefficient νi, we take the phenomenological
approximation given by Townsend [5],

νi = µe|E|α0 exp

(−E0

|E|
)

, (30)

where µe is the electron mobility, α0 is the inverse of ionization
length and E0 is the characteristic impact ionization electric
field. Also note that µe|E| is the drift velocity of electrons.
The Townsend approximation provides some physical scales
and intrinsic parameters of the model. It is then convenient
to reduce the equations to dimensionless form. Natural units
are given by the ionization length R0 = α−1

0 , the characteristic
impact ionization field E0 and the electron mobility µe, which
lead to the velocity scale U0 = µeE0 and the time scale
τ0 = R0/U0. We introduce the dimensionless variables
r = R/R0, t = τ/τ0, the dimensionless field E = E/E0,
the dimensionless electron and positive ion particle densities
ne = Ne/N0 and np = Np/N0 with N0 = ε0E0/(eR0) and
the dimensionless diffusion constant D = De/(R0U0). The
dimensionless model reads then

∂ne

∂t
= ∇ · (neE + D∇ne) + ne|E|e−1/|E| + S, (31)

∂np

∂t
= ne|E|e−1/|E| + S, (32)

where S is the dimensionless photoionization source term,

S(r) = S0

∫
ne(r′)|E(r′)|e−1/|E(r′)|K(|r − r′|) d3r ′ (33)

and

S0 = 1

4π

pq

p + pq
ξ

(
ν∗
νi

)
1

ln (χmax/χmin)
. (34)

Also,

K(r) = exp (−(χ1/α0)r) − exp (−(χ2/α0)r)

r3
. (35)

In this paper, we restrict ourselves to a planar geometry, in
which the evolution of the ionization front is along the z-axis.
In this case, the photoionization source term can be written as

S(z) = S0

∫
dz′ne(z

′, t)|E(z′, t)|e−1/|E(z′,t)|I (|z − z′|), (36)

where

I (|z − z′|) =
∫ ∞

−∞
dy ′

∫ ∞

−∞
dx ′ 1

(x ′2 + y ′2 + (z − z′)2)3/2

× (
e(−(χ1/α0)

√
x ′2+y ′2+(z−z′)2)

− e(−(χ2/α0)
√

x ′2+y ′2+(z−z′)2)
)
. (37)
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Changing to cylindrical coordinates, and integrating in the
polar angle, equation (37) results in

I (|z − z′|) = 2π

∫ ∞

0

rdr

(r2 + (z − z′)2)3/2

× (
e(−(χ1/α0)

√
r2+(z−z′)2)

− e(−(χ2/α0)
√

r2+(z−z′)2)
)
. (38)

We can define s = |z − z′| and w =
√

r2 + s2. Then

I (s) = 2π

∫ ∞

s

dw
exp (−(χ1/α0)w) − exp (−(χ2/α0)w)

w2
.

(39)

Defining the quantities

ϕ0 = 2πS0 = 1

2

pq

p + pq

ξ

(
ν∗
νi

)
1

ln (χmax/χmin)
(40)

and

k(s) = I (s)

2π
, (41)

we can write the dimensionless photoionization term in the
planar case as

S(z) = ϕ0

∫
dz′ne(z

′, t)|E(z′, t)|e−1/|E(z′,t)|k(z − z′), (42)

where

k(s) =
∫ ∞

s/α0

dx
exp (−χ1x) − exp (−χ2x)

α0x2
. (43)

The function k(s) cannot be computed explicitly in terms of
elementary functions, but its asymptotic behaviour can be
calculated. For s → ∞, we have

k(s) 	 e−(χ1/α0)s

(χ1/α0)s2
− e−(χ2/α0)s

(χ2/α0)s2
, (44)

and for s → 0, it is

k(s) 	 χ1 − χ2

α0
ln s + const. (45)

In the numerical computations, we will approximate the
function k(s) by functions with the same behaviour at infinity
and zero as the ones shown in equations (44) and (45). The
simulations show that the result is insensitive to the details of
these approximations and they only depend on the behaviour
at zero and infinity. In fact, we will use a kernel such that it is
equal to (45) for s < 1 and it is equal to (44) for s > 1. The
constant in equation (45) will be chosen in such a way that k(s)

is continuous at s = 1.
Following [9] and [16], we will take for the simulations

ξ(ν∗/νi) = 0.1, pq = 30 Torr, χ1 = 0.035 Torr−1 cm−1 pO2

and χ2 = 2 Torr−1 cm−1 pO2 . We will assume the partial
pressure of oxygen in air is given by pO2 = γp, where
p is the total pressure and γ a pure number between zero
and one. For the inverse ionization length α0, we will take
the value for nitrogen, which depends on pressure [7] as
α0 = 5.8 Torr−1 cm−1 p. For the diffusion coefficient [12],
we take De = 0.1 m2 s−1.

Using these values it turns out

ϕ0 = 0.37
1

30 + p
, (46)

with p expressed in Torr and

k(s)

=




exp(−0.006 γ s)

(0.006 γ )s2
− exp(−0.34 γ s)

(0.34 γ )s2
, s > 1,

−0.34 γ ln s+
exp(−0.006 γ )

(0.006 γ )
− exp(−0.34 γ )

(0.34 γ )
s � 1.

(47)

5. Photoionization without diffusion: acceleration of
negative fronts

We consider the case in which a divergence-free electric field
E0 = −E0uz is set along the z-axis, so that electrons move
towards the positive z-axis. Then we take the electric field as
E = −Euz, E being its modulus. So that, in the case in which
the diffusion coefficient is D = 0, the model can be written as

∂ne

∂t
= − ∂

∂z
(neE) + neEe−1/E + S, (48)

∂np

∂t
= neEe−1/E + S, (49)

np − ne = −∂E

∂z
. (50)

Now, following the approach presented in [14, 15], we
introduce the shielding factor u(z, t) as

u(z, t) = e− ∫ t

0 ne(z,t
′)dt ′ , (51)

in terms of which,

ne = − 1

u

∂u

∂t
, (52)

np = − 1

u

∂u

∂t
− ∂E0u

∂z
, (53)

E = E0u, (54)

and hence

S(z) = ϕ0

∫
dz′ ne(z

′)E0(z
′)u(z′)e−1/E0(z

′)u(z′) k(z − z′)

= −ϕ0
∂

∂t

∫
dz′G(u(z′))k(z − z′), (55)

where

G(u) = −
∫ 1

u

du1E0e−1/E0u1 . (56)

In order to deduce an equation for the shielding factor u, we
follow the steps of [14,15] and obtain a Burgers equation with
non-local source
∂u

∂t
+ E0u

∂u

∂z
= −unp0 + uG(u) + ϕ0u

∫
G(u(z′))k(z − z′),

(57)

u(z, 0) = 1, (58)

where np0 is the initial positive ion density. Our method
of solution of the above system is by integration along
characteristics; that is, we solve the following system of ODEs
dz

dt
= E0u, (59)

du

dt
= −np0u + uG(u) + ϕ0u

∫
dz′G(u(z′))k(z − z′). (60)

5179



M Arrayás et al

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

z

n e

Figure 1. Electron density ne profiles without photoionization. The
electrons move to the right following the polarity of the electric
field. A negative planar front is developed.

We use this formulation in terms of characteristics in order
to give a numerical algorithm and study the effect of
photoionization on the propagation of negative planar fronts.
We discretize the spatial variable z into N segments separated
by the points z0, z1, . . . , zN and follow the evolution in time
of each of them by solving (59) and (60). The integral term in
(60) is discretized in the following form

∫
dz′G(u(z′))k(z − z′) 	

N−1∑
j=0

G(u(zj (t)))k(zi(t) − zj (t))

×(zj+1(t) − zj (t)). (61)

In our first numerical experiment, we choose as initial data
a distribution of both electrons and ions of the form ne0 =
np0 = z exp (−(z − 2)2/0.2) and numerically integrate the
system of ODEs that result from (59)–(60) when particularized
to the nodes z0, z1, . . . , zN (for more details on the numerical
procedure, see [15]). We take E0 = 1 and the pressure
p = 750 Torr. In figure 1 we can see the evolution of the
number density of electrons when the photoionization term
is neglected. It can be seen that the electrons move in the
direction of increasing z where the anode is situated. A
negative front is developed at the right of the initial distribution.
The electrons at the left side of the initial distribution move
also following the electric field, until they reach the main body
of the plasma where the electric field is screened as one can
deduce from the fact that u in (54) becomes vanishingly small
behind the propagating front, as reported in previous numerical
simulations of planar fronts [15]. Then they stop there (around
z = 2 in figure 1). When the photoionization term is included,
the profiles change. In figure 2 the same numerical experiment
is carried out, with the inverse of photoionization range γ =
0.21, which corresponds to the normal conditions of air in the
atmosphere. Notice that one can easily recover the results of
the simulations in dimensional quantities for velocity U and
electron density Ne from our results (given in dimensionless
form c and ne, respectively) by simply using the following

0 1 2 3 4 5 6
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n e

Figure 2. Electron density ne profiles with photoionization, at
normal pressure p = 750 Torr and γ = 0.21. A negative front is
moving towards the anode at the right and the electrons start getting
accumulated at the zero electric field plasma zone.
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t

z* (t
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γ=0.5

γ=0.25

γ=0.1

Figure 3. The evolution of a point z∗ of the negative front at which
the electron density has the value ne = 0.1. When photoionization
range 1/γ is increased, the front moves faster. The line without a
label belongs to the case where photoionization is neglected.

formulae:

Ne = ε0E0/(eR0)ne, U = µeE0c, (62)

as discussed in section 4.
We can track the motion of the negative front by looking

at the time evolution of the point z∗(t) at which the electron
density has a given value. In figure 3, we compare the graphs of
z∗(t) with and without photoionization for a level of ne = 0.1.
As we can see, the effect of photoionization is an acceleration
of the negative front which reaches a higher though still
constant velocity. This fact holds, after our observations, when
one considers kernels k(s) which decay exponentially fast at
infinity.

Finally, it is interesting to observe the behaviour of the
density ne in the direction opposed to the propagation of the
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negative front (the left part of the initial distribution). This will
be called from now on ‘the positive front’. We can observe in
figure 2 an effect consisting of the accumulation of electrons
in a small region of space in the positive front. This fact is
easy to understand by considering the production of electrons
away from the positive front which are drifted towards the
positive front following the electric field. In the positive front,
electrons and positive ions are balanced and hence the net
electric field cancels. Therefore, electrons cannot proceed any
further beyond the positive front and they accumulate there.
This is an effect purely associated to photoionization which
cannot be explained by invoking any different effect. Unless
there is some mechanism allowing the electrons to spread out
once they accumulate at the positive front, their density will
grow indefinitely and eventually diverge. We will see in the
next section that this mechanism is diffusion and the net effect
of photoionization and diffusion is the appearance of travelling
waves moving towards the cathode, i.e. positive ionization
fronts.

6. Photoionization with diffusion: positive ionization
fronts

In this section we study in one space dimension the combined
effect of photoionization and diffusion on the propagation of
positive fronts. The system of equations we study is therefore

∂ne

∂t
= − ∂

∂z

(
neE − D

∂ne

∂z

)
+ neEe−1/E + S, (63)

∂np

∂t
= neEe−1/E + S, (64)

np − ne = −∂E

∂z
, (65)

where S is the photoionization source term and is written as in
equation (55).

The main difference in our approach to this problem
with respect to the problem without diffusion is that
now an integration along characteristics does not lead to
simplifications due to the presence of the second derivatives
associated with diffusion. Instead we will use the method of
finite differences.

In figure 4, we represent the profiles for ne with D = 0.57,
p = 750 Torr and γ = 0.25. We have used an initial charge
distribution which has a maximum at z = 10. When it evolves,
it can be observed that a negative planar front develops. The
propagation of the negative front is almost identical with or
without diffusion when photoionization is present. However,
there is now a positive front moving towards the cathode.
The positive front moves with a constant velocity which is
smaller than the velocity of the negative front. In figure 5 we
have plotted the position z∗ of a point of the negative front
and of the positive front which has the particular value of the
electron density ne = 0.02. The parameters are the same as in
figure 4, but for three different values of γ . For the parameter
values chosen above, we have computed the ratio between the
velocities of positive and negative fronts: cpos/cneg = 0.34 for
γ = 0.9, cpos/cneg = 0.68 for γ = 0.25 and cpos/cneg = 0.86
for γ = 0.1. The ratio grows when the photoionization range

5 10 15
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2.5
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3.5
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n e

Figure 4. Electron density ne profiles, at normal pressure
p = 750 Torr, photoionization parameter γ = 0.25 and diffusion
D = 0.57 in dimensionless units. A negative front is moving
towards the anode at the right and a positive front towards the
cathode at the left.

(This figure is in colour only in the electronic version)
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Figure 5. The evolution of points z∗ of the negative and positive
fronts at which the electron density has the value ne = 0.02. The
increasing values are for the negative front and the decreasing ones
are for the positive. When photoionization range 1/γ is increased,
the fronts move faster. Triangles 
 are for γ = 0.9, diamonds ♦ for
γ = 0.25 and squares �� for γ = 0.1.

1/γ increases and the velocities for negative and positive fronts
tend to increase and get closer to each other.

The propagation of positive fronts as travelling waves
results from the combined action of photoionization and
diffusion. This is in contrast to the propagation mechanism for
negative fronts, which are also travelling waves but they result
from a combination of impact ionization and convection by the
electric field. In the latter case, diffusion and photoionization
only affect the negative fronts by changing their velocity and
their shape. All these conclusions are rather insensitive to the
detailed form of the kernel k(s) (see formula (41)) provided it
decays exponentially fast at infinity, and hence our conclusions
hold with a high degree of generality.
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7. Conclusions

In this paper we have studied the effect of photoionization
in ionization fronts. We have deduced a minimal model
including photoionization and with this model studied the
propagation of both positive and negative fronts in the planar
case. We have found the appearance of travelling waves which
accelerate when the photoionization range increases. For
negative fronts we have studied the effect of photoionization
both when electronic diffusion is neglected and included. For
positive fronts, electronic diffusion has to be taken into account
and we have shown how photoionization plays a crucial role,
as pointed out by Raether, on increasing the velocity of
propagation. The control parameter is the photoionization
range, i.e. the typical distance at which photons are able to
ionize the media. Physically, in air, this parameter depends on
the amount of oxygen and nitrogen present. It is interesting
to point out that for real discharges in the atmosphere, this
parameter varies with the altitude.
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