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Abstract
In this paper, we study the effects of charge fluctuations on the propagation of both negative
and positive ionization fronts in streamer discharges. We show that fronts accelerate when
random charge creation events are present. This effect might play a similar role to
photoionization in order to make the front move faster.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A streamer is considered to be a plasma channel which
propagates into a neutral gas. The discharge moves by ionizing
the medium in front of its charged head due to a strong field
induced by the head itself. These kinds of discharges produce
sharp ionization waves that propagate into a non-ionized gas,
leaving a non-equilibrium plasma behind [1]. The need of
seed electrons ahead of the ionization fronts is critical for the
propagation of positive streamers moving towards the anode.
Raether [2] realized that Townsend’s mechanism which takes
into account the creation of extra charge by impact ionization
[3] was not enough to explain the velocity of propagation
of a streamer discharge. He pointed to photoionization as
the process which enhances the propagation of the streamer.
The role played by photoionization in the propagation of both
negative and positive streamers has been studied in several
works, experimentally and numerically [4–9].

In this work we show that charge fluctuations, whatever
their physical nature related to thermal noise, terrestrial or
cosmic radiation, impurities in the gas, residual charge, etc
[10], can play the same role as photoionization concerning
front propagation. More precisely, fluctuations will make the
front move faster when they are spread out over the whole
region occupied by the gas.

A natural way of modelling the charge fluctuations is
to consider random initial conditions. Consequently, we
will take an initial charge distribution function and add a
perturbation generated at random. For each realization of
the random term, the temporal evolution of the streamer will
be given by an effective simplified model widely used in

deterministic numerical simulations. Finally, we will calculate
averaged quantities as the mean values over the total number
of realizations. Thus, we compare the contribution of the
fluctuations to the propagation velocity of the fronts for
different cases, expecting that the average behaviour of the
front over random initial conditions will describe appropriately
the real situation in which free charges are created or destroyed
at every point of the gas at any time during the discharge
process. It will be shown that fluctuations in the charge
distribution lead to important effects. In order to discard the
possibility of this contribution being a consequence of adding
extra charge, we do a second kind of numerical experiment
where we compare the results of a deterministic case with
the stochastic one keeping the same total charge on average.
In both cases, we will see that the effects of fluctuations on
streamer dynamics can be understood from a theoretical point
of view.

The outline of the paper is as follows. In section 2 we
review the derivation of a simplified model which includes
photoionization, diffusion and impact ionization terms. We
take a standard model for streamers and the parameter values
normally used for atmospheric discharges and simplify it
taking special care to keep the relevant physics. In section 3 the
particular case of the planar geometry is considered. For this
case, the photoionization term can be approximated and the
numerical simulations are simplified. We introduce in section 4
the random initial conditions in order to model the fluctuations
in the charge density as the front develops. We solve the
minimal set of equations numerically for different realizations
of the initial charge distribution and then we take the average
over the number of realizations. This procedure allows us to
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study the role played by charge fluctuations in the streamer
dynamics.

In section 5 two cases are considered. In the first one,
the photoionization term is included, whereas in the second
one its effects are neglected. Thus we can test the contribution
of the charge fluctuations to the front propagation. The front
accelerates due to the presence of the fluctuations, even without
photoionization. More numerical experiments in section 6
reveal the role of charge fluctuations more clearly. When the
fluctuations are introduced, we discard negative values of the
charge density, so the physical requirement of the positiveness
of the charge densities is fulfilled. Thus, the question of
whether the acceleration of the front is a consequence of the
randomness of the initial conditions or whether it is related to
the addition of extra charge on average naturally arises. We
present other numerical experiments to elucidate this important
fact. The results yield the same increasing effect for the
velocity of propagation. In section 7 the results are analysed
and the conditions under which the fluctuations play the same
role as photoionization are discussed. Finally, we present some
concluding remarks.

2. Streamer discharge model

In this section, we recall a simplified fluid description of
a weakly ionized plasma based on kinetic theory. We
start from a model which has been extensively used in
numerical simulations and seems to capture the essential
physics of a streamer discharge [11,12]. The model including
photoionization, Sph, reads [13, 14]

∂Ne

∂τ
= ∇R · (µeENe+De∇RNe) + (νi − νa − νepNp)Ne+Sph,

(1)

∂Np

∂τ
= (νi − νepNp)Ne − νnpNnNp + Sph, (2)

∂Nn

∂τ
= νaNe − νnpNnNp, (3)

in which τ is time, R is the position in space and ∇R refers to
spatial derivatives, Ne is the electron density, Np the positive
ion density, Nn the negative ion density, µe and De are the
mobility and diffusion coefficient of the electrons, νi is the ion
production rate, νep and νnp are the recombination coefficients
and νa the attachment rate coefficient. The electric field E is
given by Poisson’s equation,

∇R · E = e

ε0
(Np − Nn − Ne), (4)

where e is the absolute value of the electron charge and ε0 is
the permittivity of the gas.

For the ionization coefficient νi, we take the phenomeno-
logical approximation given by Townsend [3]

νi = µe|E|α0 exp

(−E0

|E|
)

, (5)

where µe is the electron mobility, α0 is the inverse of ionization
length and E0 is the characteristic impact ionization electric
field.

The photoionization term Sph in equations (1) and (2)
involves a non-local contribution. For nitrogen–oxygen
mixtures it is written [4, 15] as

Sph(R) = S0

∫
νi(R′)Ne(R′)Kph(|R − R′|) d3R′, (6)

where S0 is given by

S0 = 1

4π

pq

p + pq
ξ

(
ν∗
νi

)
1

ln (χmax/χmin)
. (7)

In this expression, pq is the quenching pressure of the
singlet states of N2, p is the gas pressure, ξ is the
average photoionization efficiency in the interval of radiation
frequencies relevant to the problem, ν∗ is the effective
excitation coefficient for N2 state transitions from which
the ionization radiation comes out and χmin and χmax are,
respectively, the minimum and the maximum absorption cross
sections of O2 in the relevant radiation frequency interval. In
addition, ν∗ can be considered to be proportional to νi for the
high values of the ionization electric field considered in this
work [4].

The kernel Kph(|R − R′|) reads [5]

Kph(R) = exp (−χ1R) − exp (−χ2R)

R3
, (8)

in which χ1 = χminpO2 and χ2 = χmaxpO2 , pO2 being the
partial pressure of oxygen in air, so that χ1 < χ2.

In atmospheric discharges, we have the following orders
of magnitude for the different coefficients of the model [4]:
the term νi is of the order of 1010 s−1 for large electric fields,
νa is about 108 s−1 and νep and νnp are about 10−13 m3 s−1.
Moreover, Np is of the same order of Ne. For these parameter
values we now will turn to see that to solve numerically the
system (1)–(4) is equivalent to solving a reduced one. To this
end, we will proceed in successive steps.

First, as we have seen, νa � νi, so that the term νaNe

can be discarded from equation (1) in a first approximation.
Second, in the stationary regime, equation (3) leads to
Nn ∼ νa/νnp ∼ 1021 m−3. So we can neglect the term
νnpNnNp in equation (2) by comparison with the term νiNe.
As a consequence, within this approximation, equation (3)
decouples from (1) to (2), implying that Nn remains almost
constant while Ne and Np grow up to their saturation values.
Thus, the contribution of Nn to the Poisson equation (4) can be
interpreted as part of the initial condition for the electric field.
Taking all this into account, the model reads

∂Ne

∂τ
= ∇R · (µeENe + De∇RNe) + (νi − νepNp)Ne + Sph,

(9)

∂Np

∂τ
= (νi − νepNp)Ne + Sph, (10)

∇R · E = e

ε0
(Np − Ne). (11)

Finally, we compare νepNeNp with the term νiNe both in
equations (9) and (10). Initially, the value of Np is close to
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zero, so that we can use the Poisson equation (11) to write
equation (9) as

∂Ne

∂τ
− µeE · ∇RNe − De∇2

RNe

=
[
νi + µe

e

ε0
(Np − Ne)

]
Ne + Sph. (12)

From this expression, we can see that, since Sph has a small
effect, the total populations of both ions and electrons can grow
only up to a saturation value at which νi+µee/ε0(Np−Ne) = 0,
so that, at all times, the following inequality holds:

Ne − Np � νiε0

µee
∼ 1020 m−3. (13)

Therefore, since νepNeNp � νiNe, our final simplified model
reads:
∂Ne

∂τ
= ∇R · (µeENe + De∇RNe) + νiNe + Sph, (14)

∂Np

∂τ
= νiNe + Sph, (15)

∇R · E = e

ε0
(Np − Ne). (16)

Let us remark that the orders of magnitude deduced for Ne and
Np coincide with those found in full numerical simulations by
Liu and Pasko [4].

3. Planar fronts

We now turn our attention to the particular case of a planar
front. For this case, we will show how the photoionization
term can be written in an approximated form especially useful
in numerical experiments.

Let us begin by writing the model given by equations
(14)–(16) in dimensionless units. Natural units are given by
the ionization length R0 = α−1

0 , the characteristic impact
ionization field E0 and the electron mobility µe, which lead
to the velocity scale U0 = µeE0, and the time scale τ0 =
R0/U0. We introduce the dimensionless variables r = R/R0,
t = τ/τ0, the dimensionless field E = E/E0, the dimensionless
electron and positive ion particle densities ne = Ne/N0 and
np = Np/N0, with N0 = ε0E0/(eR0) and the dimensionless
diffusion constant D = De/(R0U0). Then, the dimensionless
evolution equations for ne and np read

∂ne

∂t
= ∇ · (neE + D∇ne) + ne|E|e−1/|E| + S, (17)

∂np

∂t
= ne|E|e−1/|E| + S, (18)

where S is the dimensionless photoionization source term

S(r) = S0

∫
ne(r′)|E(r′)|e−1/|E(r′)|K(|r − r′|) d3r ′, (19)

and

S0 = 1

4π

pq

p + pq
ξ

(
ν∗
νi

)
1

ln (χmax/χmin)
. (20)

Also,

K(r) = exp (−(χ1/α0)r) − exp (−(χ2/α0)r)

r3
. (21)

Now we restrict ourselves to a planar geometry, in which the
evolution of the ionization front is along the z-axis. In this
case, the photoionization source term can be written as

S(z) = S0

∫
dz′ne(z

′, t)|E(z′, t)|e−1/|E(z′,t)|I (|z − z′|), (22)

where

I (|z − z′|) =
∫ ∞

−∞
dy ′

∫ ∞

−∞
dx ′ 1

(x ′2 + y ′2 + (z − z′)2)3/2

×
(

e(−(χ1/α0)
√

x ′2+y ′2+(z−z′)2) − e(−(χ2/α0)
√

x ′2+y ′2+(z−z′)2)
)

.

(23)

Changing to cylindrical coordinates, and integrating in the
polar angle, equation (23) results in

I (s) = 2π

∫ ∞

s

dw
exp (−(χ1/α0)w) − exp (−(χ2/α0)w)

w2
,

(24)

where s = |z − z′| and w =
√

r2 + s2. Defining the quantities

ϕ0 = 2πS0 = 1

2

pq

p + pq
ξ

(
ν∗
νi

)
1

ln (χmax/χmin)
, (25)

and

k(s) = I (s)

2π
, (26)

we can write the dimensionless photoionization term in the
planar case as

S(z) = ϕ0

∫
dz′ne(z

′, t)|E(z′, t)|e−1/|E(z′,t)|k(z − z′), (27)

where

k(s) =
∫ ∞

s/α0

dx
exp (−χ1x) − exp (−χ2x)

α0x2
. (28)

The function k(s) cannot be computed explicitly in terms of
elementary functions, but its asymptotic behaviour can be
calculated. For s → ∞, we have

k(s) 	 e−(χ1/α0)s

(χ1/α0)s2
− e−(χ2/α0)s

(χ2/α0)s2
, (29)

and for s → 0, it is

k(s) 	 χ1 − χ2

α0
ln s + const. (30)

In the numerical computations, we will approximate the
function k(s) by functions with the same behaviour at infinity
and zero as the ones shown in equations (29) and (30). The
simulations show that the results are insensitive to the details
of these approximations and depend only on the behaviour at
zero and infinity. In fact, we will use a kernel such that it is
equal to equation (30) for s < 1 and it is equal to equation (29)
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for s > 1. The constant in equation (30) will be chosen in such
a way that k(s) is continuous at s = 1.

Following [4, 6], we will take for the simulations
ξ(ν∗/νi) = 0.1, pq = 30 Torr, χ1 = 0.035 Torr−1 cm−1 pO2 ,
and χ2 = 2 Torr−1 cm−1 pO2 . We will assume the partial
pressure of the oxygen in air is given by pO2 = γp, where
p is the total pressure and γ a pure number between zero
and one. For the inverse ionization length α0 we will take
the value for nitrogen that depends on pressure as α0 =
5.8 Torr−1 cm−1 p [16]. For the diffusion coefficient we take
De = 0.1 m2 s−1 [12].

Using these values it turns out

ϕ0 = 0.37
1

30 + p
, (31)

with p expressed in Torr, and

k(s) =




exp(−0.006 γ s)

(0.006 γ )s2
− exp(−0.34 γ s)

(0.34 γ )s2
,

s > 1,

−0.34 γ ln s +
exp(−0.006 γ )

(0.006 γ )
− exp(−0.34 γ )

(0.34 γ )
,

s � 1.

(32)

Finally, we take the electric field as E = −Euz, E being its
modulus. Thus the system of equations that we will study in
the planar case turns out to be
∂ne

∂t
= − ∂

∂z

(
neE − D

∂ne

∂z

)
+ neE e−1/E + S, (33)

∂np

∂t
= neE e−1/E + S, (34)

np − ne = −∂E

∂z
, (35)

where S is the photoionization term given by (27).
The system of equations (33)–(35) can be written in a more

convenient way for our numerical simulations. To this end, we
subtract equation (33) from equation (34), thus obtaining

∂np

∂t
− ∂ne

∂t
= ∂

∂z

(
neE − D

∂ne

∂z

)
. (36)

In addition, by taking partial derivatives in equation (35) we
have

∂np

∂t
− ∂ne

∂t
= − ∂

∂t

(
∂E

∂z

)
= ∂

∂z

(
−∂E

∂t

)
. (37)

After comparing both equations, we arrive at an evolution
equation for the electric field

∂E

∂t
= D

∂ne

∂z
− neE. (38)

This equation, together with equation (33), constitutes an
appropriate starting point to analyse the minimal model
numerically. In summary, we consider the equations
∂ne

∂t
= − ∂

∂z

(
neE − D

∂ne

∂z

)
+ neE e−1/E + S, (39)

∂E

∂t
= D

∂ne

∂z
− neE, (40)

which will be solved by means of a finite difference method
with a given initial distribution ne,0(z) = ne(z, 0) and electric
field E0.

4. Random initial conditions

In this section, we will introduce random initial conditions in
order to model the fluctuations in the charge density as the
fronts develop. By this, we mean that ne,0(z) will be written
as the sum of a smooth deterministic term and a perturbation
generated at random

ne,0(z) = n
(det)
e,0 (z) + n

(random)
e,0 (z), (41)

where n
(det)
e,0 (z) is the deterministic term of the form considered

in [13]

n
(det)
e,0 (z) = n0z e−(z−z0)

2/σ , (42)

which mimics the initial seed of charge developing into a
streamer3, and n

(random)
e,0 (z) is the dimensionless random term

n
(random)
e,0 (z) =

√
�η(z), (43)

which introduces the charge fluctuations, whatever its origin
(thermal noise, radiation, etc). In this equation, η(z)

will be obtained, for each z, from a zero mean Gaussian
distribution with unit variance, � representing the intensity
of the fluctuations in the initial electron density. From the
above definition, it is clear that ne,0(z) might take both positive
and negative values. Of course, a negative electron density
lacks any physical meaning. So, when generating the initial
distribution ne,0(z), we check the condition ne,0(z) > 0 for
every z. In case we obtain ne,0(z) � 0 for some z = z′, we
redefine ne,0(z

′) = 0.
It is clear that we can obtain different initial conditions

ne,0(z), all of them with the same deterministic term and
the same �, just choosing different values of η(z) for each
z from the Gaussian distribution mentioned above. We will
call each of the initial conditions generated by following this
procedure a realization. Of course, the solution of the streamer
discharge model will change for different realizations. Thus,
in order to analyse the role played by charge fluctuations in
the evolution of the front, we look at the averaged response
of the system to the random initial condition. More precisely,
the set of equations of the model will be solved starting from
different realizations of the initial conditions and, after this,
the quantities of interest (in our case, the positions of the
fronts as a function of time) will be evaluated for each of the
initial solutions and the average over realizations computed
numerically. As we pointed out in the introduction, it is
expected that the response of the system to the presence
of charge fluctuations in a real case will be conveniently
mimicked by this average procedure.

3 We have checked that replacing the right-hand term in equation (42) by a
Gaussian distribution produces similar results to those presented in this work.
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5. Acceleration of fronts due to random initial
conditions

In this section we will show the results of our numerical
experiments. We consider the case in which a divergence-
free electric field E0 = −E0uz is set along the z-axis, so
that electrons move towards the positive z-axis direction. We
will see how the randomly distributed charge affects the front
propagation in a similar way as the photoionization term does.
We will consider here two separate cases. In the first one,
the photoionization term will be included, whereas in the
second one its effects will be neglected. Thus we can test the
contribution of the charge fluctuations to the front propagation.

5.1. Effects of the fluctuations on the front propagation

We are going to test the effects of the charge fluctuations on
the streamer propagation including photoionization. In our
first numerical experiment we take D = 0.57, p = 750 Torr,
γ = 0.25 and solve the equations given by (39) and (40). The
initial value of the electric field is E0 = 2 in the simulations.
Following [16], the unit of the electric field is 2 × 107 V m−1,
the length unit 2.3×10−6 m and the time unit 3×10−12 s. For
particle densities, the unit is 4.7 × 1020 m−3.

A finite difference method with a spatial step size �z and
a time step �t is used to follow the time evolution of ne(z, t)

and E(z, t). More precisely, for each time step, the spatial
derivatives appearing at the right hand sides of equations (39)
and (40) are approximated as the differences

∂ne(z, t)

∂z
= ne(z + �z, t) − ne(z − �z, t)

2�z
, (44)

∂2ne(z, t)

∂z2
= ne(z + �z, t) + ne(z − �z, t) − 2ne(z, t)

(�z)2
,

(45)

and
∂

∂z
[ne(z, t)E(z, t)]

= ne(z + �z, t)E(z + �z, t) − ne(z − �z, t)E(z − �z, t)

2�z
,

(46)

while the integral appearing in equation (27), which defines
the dimensionless photoionization term S(z), is replaced by
a discrete sum over �z. The use of these expressions makes
the evaluation of ∂ne(z, t)/∂t and ∂E(z, t)/∂t straightforward
within this approximation. Finally, the solution at time t + �t

is given by

ne(z, t + �t) = ne(z, t) +

[
∂ne(z, t)

∂t

]
�t, (47)

E(z, t + �t) = E(z, t) +

[
∂E(z, t)

∂t

]
�t. (48)

The respective values of the spatial and temporal intervals are
chosen to be �z = 0.01 and �t = 0.000 04, thus ensuring
that the stability criterion 2D�t/(�z)2 < 1 is fulfilled. In
addition, the initial values of the electric field and electron
density used in the simulations are given, respectively, by

0 5 10 15 20
z

0.01

0.1

1

n
e

0 5 10 15 20
z

0.01

0.1

1

n
e

Figure 1. Log scale plot of the evolution of the electron charge
density ne for one realization of the stochastic initial conditions
when diffusion and photoionization are both present. Values of the
parameters of the initial condition (depicted in the inset in
logarithmic scale also) are n0 = 1/3, z0 = 10, σ = 0.1 and
� = 0.001. The propagation of two fronts can be seen at t = 0.04
(thick line), t = 0.2 (dashed line), t = 0.4 (dotted–dashed line) and
t = 0.6 (thin line).

E0 = 2 and equations (41)–(43) with n0 = 1/3, z0 = 10,
σ = 0.1 and � = 0.001.

In figure 1, we plot the electron density at different times
for the particular realization of the initial conditions shown in
the inset. Logarithmic scale is used in this figure in order to
make more visible the development of two fronts during the
initial state of the streamer propagation. The evolution of two
fronts is clearly seen, one of them moving towards the anode
located on the right, which we call the negative front, and the
other one towards the opposite direction, named the positive
front [13].

We can track the motion of the negative and positive
fronts by looking at the time evolution of the point z�(t) at
which the electron density has a given value. We have chosen
a level of ne = 0.1.4 Due to the random character of the
initial condition, different electron densities profiles develop,
corresponding to different realizations of the random part in
equation (41), even for fixed values of �. When, for each of
these realizations, z� is plotted as a function of time, a virtually
linear dependence is obtained once a relatively short transient
period elapses, thus resembling the results given in [13]. Of
course, the exact linear dependence varies slightly from one
realization to another. However, it is straightforward to obtain
the average linear dependence from the set of realizations run
in simulations. This average provides an idea on the effect of
the fluctuations on the development of the fronts. In figure 2,
we compare the graphs of z�(t), averaged over 25 realizations,
corresponding to different values of the fluctuation term in the
initial charge distribution. The effect of charge fluctuations
is an acceleration of the front propagation which reaches a
higher, though still constant, velocity. It is apparent that the
front accelerates when the intensity � increases.

4 The simulations show that the results are insensitive to the choice of this
value within certain reasonable limits.
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z*
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t

8.8

8.9

9

z*

Figure 2. Evolution of the averaged z�(t) for different values of �
when diffusion and photoionization are both present, corresponding
to negative (upper panel) and positive (lower panel) fronts. Empty
circles stand for � = 10−6, triangles for � = 10−4 and crosses for
� = 10−3.

11.5

12

12.5

z*

0.2 0.25 0.3 0.35 0.4
t

8.9

9

9.1

z*

Figure 3. Evolution of z�(t) for different values of � when
photoionization is absent. The positions of negative (upper panel)
and positive (lower panel) fronts have been tracked for different
values of �: 10−5 (empty circles), 10−4 (triangles), 10−3 (crosses)
and 5 × 10−3 (full points).

5.2. Acceleration without photoionization

Now we will switch off the effect of the photoionization in
order to see the singular contribution of the fluctuations to the
front motion.

Figure 3 shows that the effect of increasing the speed of
the propagation persists in the absence of the photoionization
term. In this figure we depict the averaged z�(t) over N = 50
realizations as a function of time for different values of � and
for the same set of parameter values as in the previous section,
but in the absence of the photoionization term (ϕ = 0). Clearly,
the front accelerates as a consequence of the presence of the
fluctuations when � increases, even without photoionization.

6. Numerical experiments with the same initial
charge

A further numerical experiment will reveal the role of charge
fluctuations more clearly. It is apparent that the procedure used
above to introduce the random term in the initial condition
is biased. This is caused by the physical requirement of the

positiveness of the electron density. When the fluctuations are
introduced the total initial electronic charge is increased. Thus,
the question if the acceleration of the front is a consequence of
the randomness of the initial conditions or it is related to the
addition of charge on average naturally arises. We present here
another numerical experiment to elucidate this important fact.

The total number of electrons introduced at time t = 0 in
the region between the plates is given by

Ne =
∫

dzne,0(z), (49)

where the integral is performed over the whole z-domain.
Given a fully deterministic initial electron density of the form
given in equation (42), i.e.

ne,0(z) = n
(det)
e,0 (z) = n0z e−(z−z0)

2/σ , (50)

it is clear that, for a fixed z0, the total number of electrons Ne

can be easily changed by modifying n0, σ or both (an analytical
expression in terms of error functions can be obtained for the
above integral evaluated in a closed interval). On the other
hand, the averaged initial number of electrons introduced in the
system when the random term is present (see equation (41))
is also easily calculated numerically as the total number of
electrons introduced in all the realizations over the number of
realizations.

The following numerical experiment will allow us to
compare the deterministic case with the stochastic one, while
the total initial electron charge is the same in both cases. For
every value of �, we compute numerically the average initial
number of electrons introduced in the system by means of the
initial condition (41). Let us call this number N̄e. Then we
modify n0 or σ in equation (42) in order to obtain a purely
deterministic initial condition with the same number of initial
electrons, i.e. we look for a value of n0 or σ satisfying

∫
dzn

(det)
e,0 (z) = N̄e. (51)

After this, we follow the time evolution of the front
starting from both initial conditions, the deterministic and
the stochastic one, which have the same total initial charge
(in average). The results are included in figures 4–7. For
convenience, we have treated separately the cases in which n0

is changed from those in which σ is modified.

6.1. Changing the width of the initial distribution

We consider first the case in which σ in equation (50) is
varied, keeping the prefactor n0 constant. Initially, we take
into account both photoionization and diffusion. The position
of z� as a function of time for a level ne = 0.1 is plotted
in figure 4, where upper (lower) panels stand for negative
(positive) fronts. In this figure, we use stars to plot the averaged
position of the front over 25 different realizations of the initial
condition, evaluated as explained in the previous section, for
� values 10−4 (left panels) and 5 × 10−3 (right panels). With
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Figure 4. Position of negative and positive fronts as a function of
time in the presence of photoionization and a random initial
condition. Full points correspond to the averaged response of the
system under random initial conditions. The evolution from a
deterministic initial condition of the form in equation (42), where σ
is chosen to fulfil equation (51), has been plotted with empty circles.
� = 10−4 for the left panels and � = 5 × 10−3 for the right ones.

empty circles, we plot the values of z�(t) corresponding to
purely deterministic initial conditions of the form given in
equation (42), with z0 = 10 and n0 = 1/3. Moreover, for
each �, σ is computed by imposing that equation (51) holds,
where N̄e is defined as the average over realizations of the total
initial charge corresponding to the random initial condition
with � = 10−4 and � = 5 × 10−3, respectively.

As in the previous section, it is apparent that the speed
of both positive and negative fronts is higher in the random
case than in the deterministic one. At the same time, the
accelerating effect is higher as � increases. However, this
numerical experiment confirms that the acceleration of the
fronts is truly a consequence of the random distribution of the
initial charge and not a spurious effect caused by the addition
of new charge to the initial situation.

In figure 5, after averaging over 50 realizations, we show
that the effect persists in the absence of the photoionization
term. It can be seen that the velocity of propagation given by
the slope of the numerical data increases. It can be observed
a cross of the dot and circle lines. This fact simply reflects
that the initial point for the level z� in the deterministic initial
condition case and the initial point for the level z� in the random
initial condition case are different.

6.2. Changing the prefactor

Now we will change the prefactor n0 defined in equation (50),
keeping σ constant. In figure 6, the positions z�(t)

corresponding to random and deterministic initial conditions
with the same initial charge (in average) are drawn. We
consider the cases in which the prefactor n0 in equation (42) is
tuned to satisfy equation (51) when � = 10−4 (left panels) and
� = 5 × 10−3 (right panels), while the rest of the parameters
are kept fixed.
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Figure 5. Position of negative and positive fronts as a function of
time in the absence of the photoionization term. Full points
correspond to the averaged response of the system under random
initial conditions. The evolution from a deterministic initial
condition of the form in equation (42), where σ is chosen to fulfil
equation (51), has been plotted with empty circles. � = 10−3 for
the left panels and � = 6 × 10−3 for the right ones.
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Figure 6. The same as in figure (4), with fixed σ and corresponding
values of n0 fulfilling equation (51) when � = 10−4 (left panels)
and � = 5 × 10−3 (right panels).

The results for the negative and the positive fronts are very
similar to those described in the previous section, confirming
that, starting from the same total initial charge, the fronts
propagate faster in those cases in which the fluctuations due to
uncontrollable environmental sources are present. The speed
of the fronts depends on the strength of the fluctuations.

Again, the results are confirmed when the photoionization
term is switched off, as can be seen in figure 7. This fact
clearly shows that the presence of sparse charge throughout
the gap between the electrodes due to natural sources provides
an accelerating mechanism by itself, in addition to that of
photoionization.

7. Analysis of the results

We proceed in this section with a discussion of the effects
observed in the simulations and providing an explanation of
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Figure 7. The same as in figure (5), with fixed σ and corresponding
values of n0 fulfilling equation (51) when � = 10−3 (left panels)
and � = 6 × 10−3 (right panels).

the role played by fluctuations in the enhancement of the speed
of the fronts.

In previous works [13, 17–19], it has been shown that
the tail of the distribution of the charge ahead of the front
plays a fundamental role in the dynamics of the front. The
particular shape of this tail is not relevant, only its decay far
away from the front. When the photoionization term is present,
the characteristic ionization length of the photons extends the
relaxation region of the tail, and the front moves faster. This is
exactly the effect that fluctuations play when they are present.
We will not perform here a rigorous mathematical proof of this
statement, but we will instead show that this is the case with
the following numerical experiment.

We consider again our streamer discharge model in the
absence of the photoionization term and in the presence of an
initial distribution of the form given in equation (41). The
deterministic part will obey equation (42) but, in contrast to
previous sections, the random term will be considered equal to
equation (43) only in a certain interval [z0 − δz, z0 + δz], being
zero outside this region around the maximum of the initial
charge distribution. In this way, we introduce an artificial
cutoff in the random term which eliminates the contribution
of charge fluctuations to the tail of the distribution charge.
The results corresponding to the average position of the front
as a function of time, z�(t) are depicted in figure 8 for several
values of � and δz = 1 (in all the simulations, z ranges from
0 to 20). Other parameter values remain as in figure 5. These
results clearly show that the velocity of the front is the same
in all cases, even for high values of �, although the value of
the electron density for a fixed value of the space coordinate z

increases as � increases, as expected.
So the charge fluctuations make the front speed up only

when they are not restricted to a region close to the initial
seed. It is claimed that the streamer develops out of an initial
seed produced in a region where the field is high enough to
produce an electron avalanche. We have shown that the charge
produced in other regions may not be enough to initiate a
streamer, but its presence definitely affects the dynamics of
the streamer.

0.2 0.25 0.3 0.35 0.4
t

11.5

12

12.5

z*

Figure 8. Evolution of z� when photoionization is absent and the
random term of the initial condition is restricted to a narrow interval
around z0. The different values of the intensity of the fluctuation
term are: � = 10−5 (empty circles), � = 10−2 (crosses), � = 10−1

(triangles), and � = 1 (full points). See text for details about the
rest of the parameters.

8. Conclusions

In this paper we have studied the effects of charge fluctuations
on the propagation of streamer fronts. Whatever the origin of
the fluctuations in a real discharge, they can play the same role
as photoionization. We have shown that the fluctuations can
make the front move faster.

We have modelled the fluctuations by introducing random
initial conditions into a widely used minimal model for
simulating the streamer propagation. We started from a general
model and deduced the minimal one which retains the relevant
physics for the range of parameters considered. The average
behaviour of positive and negative fronts is investigated. The
numerical experiments show that the random charge speeds up
the front movement. Special attention has been paid to discard
the effect of adding extra amount of charge when compared
with the deterministic case.

The results are qualitatively analysed in the light of some
theoretical predictions, and further numerical simulations are
carried out to prove that the presence of charge fluctuations
extended to the whole space along the streamer path accelerates
the front. This effect definitely plays an important role in
streamer dynamics. Moreover, its effect on the dynamics of
the streamer is equivalent to the effect of photoionization.

We note that in pure gas discharges such as nitrogen
or argon, the presence of photons able to ionize the gas is
not so well understood as in oxygen–nitrogen mixtures. We
want to remark that the presence of charge fluctuations in
electric discharges is similar to the presence of impurities on
semiconductors. The drastic effects of those impurities in the
properties of semiconductors are well known. In this paper we
have demonstrated that charge fluctuations indeed make the
streamers move faster. This fact deserves further theoretical
and experimental investigations.
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