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Strong enhancement of noise-induced escape by nonadiabatic periodic
driving due to transient chaos
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We have found a mechanism by which a moderately weaknonadiabaticperiodic driving may significantly
facilitate noise-induced interwell transitions in anunderdampedmultiwell system. The mechanism is associ-
ated with the onset of ahomoclinic tanglein the noise-free system: if the ratio of the driving amplitudeA to
the dampingG exceeds a critical value;1, then the basins of attraction of the linear responses related to
different wells are mixed in a complex manner in some layer associated with the separatrix of the undriven
nondissipative system, and the minimal energy in such layer is lower than the top of the barrier. Thus the
energy to which the system needs to be activated by the noise, to be able to make a transition, is lower than the
top of the barrier.
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The influence of weaknonadiabaticperiodic driving on
noise-induced escape is a fundamental problem whose s
tion is far from completion, despite numerous studies~e.g.,
Ref. @1–6#!. It is also relevant to many applications, e.g.,
the destruction of metastable states in devices based on
sephson junctions@1,4# or in mechanical electrometers@7#,
and to directed diffusion@5,6#.

Unlike most of the works on stochastic resonance~see
Refs.@8,9# for reviews! and early works on directed diffusio
~e.g., Ref.@10#!, which relate toadiabaticdriving ~when the
escape rates are determined by the instantaneous value
driving force!, the escape rate fornonadiabaticdriving does
not manage to follow changes of the driving force. If t
temperature is not too small, the main effect of the drivi
was shown@3# to be an enhancement of the diffusion ov
the energy, which increases only theprefactor in the escape
rate ~still weakly: the correction is quadratic in the drivin
amplitude, which is small!. But if the temperature is smalle
than the driving amplitude, the effect of nonadiabatic drivi
was recently shown@5# to be much stronger: the mechanis
in Ref. @5# was based on positive work by the force, pushi
the system resonantly with the eigenoscillation at the re
nant energy, thus freeing the noise from this work in t
range of energies close to the resonant one, which lowers
activation energy.

However, the increase of the escape rate predicted
Refs. @3,5# divergesas the dampingG goes to zero. On the
one hand, this suggests that the system should beunder-
dampedin order for the increase to bemaximallypossible.
On the other hand, neither of these theories can determ
what are~i! the maximum increase,~ii ! the proper conditions
for it, and ~iii ! the underlying mechanism. Thus it is e
tremely important to study the problem in the underdamp
limit, which is the major purpose of this paper.

As an example of systems possessing a barrier, we
sider the double-well Duffing oscillator~Fig. 1!:

P~ q̈,q̇,q,t !5j~ t !, P5q̈12Gq̇1U8~q!2A cos~Vt !,
~1!
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^j~ t !j~ t8!&54GTd~ t2t8!, U~q!52q2/21q4/4.

Using the concept oflarge fluctuations~see, e.g., Refs
@11,12,5#; the full variety of modifications of the concept i
reviewed in@13,14#!, one can show that the transition rateW
between steady regimesqst

(1,2)(t) of the forced vibrations
around the minima of the potentialU(q) can be described by
an activation lawW}exp(2Sa /T), where the activation en
ergy Sa is some functional minimized over the end statesWe
@any state in the phase space from which the noise-free
tem can relax both intoqst

(2)(t) and qst
(1)(t)#, over the end

time te and over the path@q(t)#[@qst
(1)→

te
sWe #:

Sa5min[q(t)],sWe ,te
S, S5

1

8GE2`

te
dtP2~ q̈,q̇,q,t !,

~2!

q~ t→2`!→qst
(1)~ t !, $q~ te!,q̇~ te!%5sWe→

n f

qst
(1,2)~ t !,

FIG. 1. Duffing potentialU(q)52q2/21q4/4.
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qst
(1,2)~ t !'q0

(1,2)1
A

22V2
cos~Vt !, G!uV2A2u.

If A50, then all states$q,q̇% corresponding toqst
(1,2)(t)

reduce to thestationary stable statessW1,2 of the undriven
system while theexit state sW

ex , i.e.,sWe minimizing S, reduces
to theunstablestationary stateuW at the top of the barrier~the
exit time tex , i.e., te minimizing S, reduces tò ). The path

@q(t)# yielding Sa for the transitionsW1→uW , called the most
probable escape path (PMPEP), is the time reversal of the

noise-free trajectory@uW→
n f

sW1# ~see, e.g., Refs.@11,5#!:

PMPEP~A50![@Q~ t !#, Q̈22GQ̇1U8~Q!50,
~3!

Q~2`!5q0
(1) , Q̇~2`!50, Q~`!5qb , Q̇~`!50.

The path@Q(t)# providesSa5DU[Ub2U0, which obvi-
ously agrees with the classical result@15#.

The presence of the periodic driving affectsSa in three
different ways:~1! a shift of the exit energyEex[E(sWex)
[q̇ex

2 /21U(qex) from E(uW )5Ub ; ~2! a shift of the starting

energyEst , i.e., energy of the starting statesWst ~belonging to
qst

(1)), from E(sW1)5U0; and ~3! a breakdown of the relation
Sa5Eex2Est . Correspondingly, we formally dividedSa
[Sa2DU into three parts:

dSa[dSa
(ex)1dSa

(st)1dSa
(r ) , dSa

(ex)[Eex2Ub ,
~4!

dSa
(st)[U02Est , dSa

(r )[Sa2~Eex2Est!.

Before considering these separately in items~1!–~3! below,
we need to briefly review the relevant results of Ref.@5#.

In the asymptotic limitA→0, the leading-order correctio
to thePMPEP(A50)[@Q(t)# is linear inA @5# ~in particular,
this concernssWst andsWex). As follows from the definition of
the PMPEP @11,5#, corrections toSa(A50)[DU from a lin-
ear correction ofPMPEP are weaker than linear. Hence,
calculate the leading-order~linear! term indSa , one may use
@Q(t)# @5#:

dSa'dSa
(r )'2uxuA, x52E

2`

`

dteiVtQ̇~ t !. ~5!

If G!1,V, the most important contributions tox(V) are
provided by those bits of@Q(t)# which correspond to ener
giesE[Q̇2/21U(Q) close to theresonantenergiesEn(V),
implicitly defined asnv(En)5V, where v(E) is the fre-
quency of eigenoscillation with energyE, andn is an integer.
Labeling with N the resonance which provides the large
contribution todSa , one obtains@5#
05111
t

uxu'xN

[uQ̇N~EN!u E
2`

`

dt cosS N
dv~EN!

dEN
2Gv~EN!I ~EN!t2D

5F uQ̇NuS 2GNIUdv2

dE UY p D 21/2G
E5EN

}
1

AG
→

G→0

` ~6!

@here Q̇N(EN), v(EN) and I (EN) are the amplitude of the
Nth overtone of the velocity, frequency and action for t
eigenoscillation at energyEN , respectively#. It is taken into
account in Eq.~6! that, alongQ(t), Ė'2Gv(E)I (E), while
v(E)'v(EN)1dv(EN)/dEN(E2EN), and t50 is defined
asE(t50)5EN .

The divergence ofx may give the impression that, asG is
decreased to;A2, the escape probability grows to;1 @16#.
But, as we will see, this impression is wrong: Eq.~5! is
invalid for G&A, and the contribution from the resona
mechanism vanishes rather than grows asG→0, while dSa

is dominated bydSa
(ex) at G!A2.

~1! To evaluatedSa
(ex) we note first thatdSa

(r ) is domi-
nated by the resonant mechanism@5#, which, forG!1, does
not involve sWe @cf. Eqs.~5! and ~6!, as well as item~3! be-
low#. Therefore,dSa

(ex) can be derived from the minimizatio

of E(sWe) over sWe , independently ofdSa
(r ) anddSa

(st) . So, to

leading order inA, sWex is the state which, among all possib
sWe , has the minimal energyEm :

dSa
(ex)'Em2Ub . ~7!

For A→0, sWex belongs to the unstable periodic orbit ne
the top of the barrier@5#. SoUb2Em'A2/@2(11V2)2# and
2dSa

(ex)!2dSa
(r )}A can be neglected.

On the other hand, if

A.Ac'm lG, m l5
4A2 cosh~pV/2!

3pV
, ~8!

(m l;1 at V;1, so thatAc;G), then ahomoclinic tangle
arises in thenoise-freesystem@17#, leading, in the Poincare´
section, to a complex mixing of the basins of attraction
qst

(1,2) in a layer around the boundary between the basins
attraction of the stable states of the undriven system~Fig. 2!.
To first order inA, Em is the minimum energy in that part o
the basin of attraction ofqst

(2) whereq,0, additionally mini-
mized over the angle of the Poincare´ section. It can be shown
~cf. Ref. @17#! that, to first order inA, Em,Ub if and only if
condition ~8! holds. If Eq. ~8! holds andV;1, then (Ub
2Em)/A;1.

One can rather easily findEm numerically, merely inte-
grating the dissipative equation~1! in the absence of noise
(T50) on a grid of initial states withq,0, and choosing
from them the state which has the minimal energy among
the states which provide a relaxation to the attractorqst

(2) :
this energy approximatesEm to first order inA.
1-2
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FIG. 2. Stroboscopic (Vt50,2p,4p, . . . ) Poincare´ sectionq̇2q of the noise-free (T50) system~1! for A50.07, V51.7 while G
decreases:~a! G50.07,~b! G50.025, and~c! G50.005. Attractors corresponding toqst

(1,2) are marked by dots, and label 1 and 2. Their bas
of attraction are shown by different shades of grey@small black areas in~c! are basins of attraction of period-3 orbits#. The mixing of basins
is ~a! absent,~b! already present, and~c! well developed.
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Moreover, for A@Ac;G, the numerical search forEm
can be additionally simplified significantly: the lower-ener
boundary of the layer then coincides with the lower-ene
boundary of the corresponding chaotic layer of thenondissi-
pative system~namely, of the chaotic layer which include
the state$q5qb , q̇50%), while it can be shown that the
minimal energy in a Poincare´ section of the chaotic layer
Em

(nd) , is independent of the section angle; thus,Em'Em
(nd) .

The explicit formula forEm
(nd) is not known @18#, but the

chaotic layer is readily generated by computer, so thatEm
(nd)

can be very easily found numerically. Its detailed analy
will be presented elsewhere; here we present characte
examples of the dependence ofUb2Em

(nd) on the amplitude
and frequency of the driving force. The amplitude depe
dence is stairlike@Fig. 3~a!#, while the frequency dependenc
has sharp peaks@Fig. 3~b!#. Jumps in the former dependenc
and peaks in the latter correspond to the overlap and sep
tion between nonlinear resonances. Let us first demons
this for the frequency dependence.

For very smallV, the relevant chaotic layer relates on
to the separatrix of the undriven system, andUb2Em

(nd)

}VA @19#. As V grows, the resonant energyE1(V) sharply
lowers and, starting fromV5V1'2p/ ln(1/A), the lower
part of the chaotic layer relates to the lower part of thenon-
linear resonance@14–16# while the upper part of the laye
still relates to the separatrix of theundriven system@both
parts are clearly resolved in the Poincare´ section: Fig. 4~a!#.
Thus Ub2Em

(nd) grow sharply, and reaches the first max
mum for V slightly larger thanV1 while, asV grows fur-
ther, the layer related to the nonlinear resonance sepa
from the layer around the original separatrix and, thus,
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no longer provide the interwell chaotic transport@Fig. 4~b!#:
due to this,Ub2Em

(nd) drops abruptly. Peaks at the multip
frequencies correspond to higher-order resonances.

Similarly, asA grows,Ub2Em
(nd) undergoes large jump

at An;exp(22pn/V), related to successive overlaps betwe
the original layer and the layers associated with nonlin
resonances. Note, however, that the largestAn , namely,
A[V/A2]11, is still typically quite small~unlessV is only
slightly less than the eigenfrequency at the bottom,A2) and
the further growth ofUb2Em

(nd) with A is approximately
linear. Thus, for most of the rangeA!1, the quantity (Ub

2Em
(nd))/A plays a role similar to the role ofuxu in Eq. ~5!.

~2! The maximum deviation of energy on the attract
qst

(1)(t) from U0 is '$A max(V,A2)/(22V2)%2/2. Thus

2dSa
(st)[Est2U0,

1

2 S max~V,A2!

22V2 D 2

A2, ~9!

and may be neglected in comparison with2dSa
(ex) if

A!Am[8~12V/A2!2, V;1. ~10!

UnlessV is very close toA2, Am&1, so thatdSa
(st) may be

neglected in the range under study,A!1.
~3! To leading~linear! order inA, the correctiondSa

(r ) in
the presence of the layer may be described analogousl
when in the absence of the layer@cf. Eq. ~5!#,

dSa
(r )'2ux̃uA, x̃52E

tst

tex
dteiVtQ̇̃~ t !, ~11!
FIG. 3. ~a! Ub2Em
(nd) as a function ofA ~note logarithmic scales! for V51.7. ~b! (Ub2Em

(nd))/A as a function ofV for A50.0001,
0.001, and 0.01~solid, dashed, and dotted lines, respectively!. Em

(nd) is the minimal energy in the chaotic layer in the Poincare´ section of the
nondissipativesystem~cf. Fig. 4!.
1-3
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FIG. 4. The chaotic layer~black! which provides theinterwell chaotic transport in the nondissipative noise-free system, forA50.01.~a!
V51.1, and~b! V51.2.
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whereQ̃(t) is the time reversal of the noise-free relaxati
from sWex to sWst[$q(tst),q̇(tst)%. As in the absence of the
layer, the main mechanism contributing tox̃ at smallG is a
resonant one, so thatux̃u'xN as in Eq.~6!.

Let us first estimate the range ofG at which the resonan
mechanism saturates and Eq.~11! is no longer valid.
The main contribution to the integral in Eq.~6! comes
from the range of t during which the absolute valu
of the argument of the cosine is&p/2, i.e., utu&t r

[Ap/@4Vudv(EN)/dENuGI (EN)#}G21/2. In this range, the

energy along thePMPEP, E' Q̇̃2/21U(Q̃), increases from
EN2DEr /2 to EN1DEr /2, where

DEr'2Gv~EN!I ~EN!2t r}AG. ~12!

The ‘‘unperturbed’’ part of the activation energy associa
with a noise-induced increase of energy forDEr is equal to
DEr . Thus the perturbative formula@Eq. ~11!# is valid as
long as the absolute value of the negative correction by
resonant mechanism in the range@2t r ,t r #, which is
;uQ̇N(EN)ut rA, is less thanDEr . Hence the range of the
validity of Eq. ~11! is

A!m rG, m r5@vI /uQ̇Nu#E5EN
. ~13!

Typically, m ri1. So, asG decreases, the growth of2dSa
due to the resonant mechanism saturates atG;A.

The next question is what isdSa
(r ) for G!A? We have not

succeeded in a rigorous treatment of this problem, whic
extremely difficult, but we suggest an intuitive argument
favor of a vanishing correction asG→0 ~computer simula-
tions confirm this; see below!: the resonant mechanism a
fects mainly the ‘‘resonant’’ energies, i.e., those in the ba
@EN2DEr /2,EN1DEr /2#; hence the absolute value of th
correction cannot significantly exceed the width of this ba

2dSa
(r )uDEr}AG →

G→0

0, GuA. ~14!

Comparing the contributions considered in items~1!–~3!, we
conclude that, provided

AG!A!8~12V/A2!2,1, ~15!

the layer mechanismdominates indSa :
05111
d

e

is

d

,

2dSa'2dSa
(ex)'Ub2Em

(nd);A. ~16!

Thus, if A increases~while G!1!, 2dSa evolves as fol-
lows: for A!G, it grows in accordance with Ref.@5#, i.e.,
2dSa'2dSa

(r )'uxuA; for A;G, it saturates; forAiG, it
grows again, due to the loweringEex @see Eqs.~7! and~16!#.

FIG. 5. 2dSa as function of~a! A ~for G50.025), or~b! G21/2

~for A50.07);V51.7 in both cases. Stars are computer simulatio
of Eq. ~1!, using Eq.~17!; dotted lines are theory for2dSa

(r ) , based
on the resonant mechanism@5# @see Eq.~5!#; solid lines are theory,
based on the layer mechanism@Eq. ~7!#, for Ub2Em . The dashed
line in ~b! showsUb2Em

(nd) , which is our theoretical nondissipativ
asymptote both for2dSa and for the solid line@see Eq.~16!#.
1-4
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Note that, if 1@A@AG,A[V/A2]11, then the growth is ap-
proximately linear@cf. Figs. 3~a! and 5~a!#.

If, fixing A!1, we decreaseG, then 2dSa evolves as
follows: for G@A, it is given by Eq.~5!, typically growing
}G21/2 if G!1; for G;A, it saturates at;DEr}AA, while
reaching the asymptotic limit@Eq. ~16!# for G!A2. Thus, in
the asymptotic limitA→0, the function2dSa(G) possesses
a maximum (}AA) at G;A. At the same time, ifA is mod-
erately small, then the maximum (}A) is reached atG→0
@cf. Fig. 5~b!#.

To test our theoretical predictions, we numerically sim
lated Eq.~1!, and measured the transition fluxJ[J(A,T)
from qst

(1)(t) to qst
(2)(t) ~at small temperatures!. In order

to reduce as much as possible the influence of the prefa
P in the determination of Sa @note that J(A,T)
5P(A,T)exp„2Sa(A)/T…#, we simulated Eq.~1! for two
slightly different temperatures and measured the flux b
for a givenA and for A50; an activation energy was the
calculated as

Sa'
T1T2

T12T2
lnS J̃~A,T1!

J̃~A,T2!
D ,

J̃~A,T![J~A,T!/J~A50,T!, ~17!

T1!DU, uT12T2u;T1
2/DU.

Figure 5 shows that the crossover between the ‘‘re
nant’’ and ‘‘layer’’ mechanisms indSa(A), dSa(G21/2) oc-
curs in good agreement with the theoretical predictions,
that Eq.~16! is well satisfied. Moreover, for the given pa
rameters, the layer mechanism becomes dominant even
fore the layer approaches its nondissipative limit.

Let us briefly discuss the application of our results to
problem of directed diffusion in periodic potentials at lo
ys
.

-

s.

-
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damping@5#. The theory@5# predicts that the activation en
ergies for the escape to the adjacent well from the left a
from the right are typically different~so that the fluxes to the
left and to the right differ exponentially strongly!; moreover,
this difference grows}G21/2 asG→0. However, as follows
from the results of the present paper, this growth saturate
G;A ~i.e., long before the correction@5# to the activation
energy becomes comparable to the potential barrier, wh
occurs atG;A2) and then vanishes, since a layer with mix
basins~transient chaos! is formed; as soon as the syste
reaches any point of this layer it may then be transported
the well from the left and to the well from the right, wit
probabilities of the same order@20#.

Finally, we put our work into the context of studies of th
interplay between chaos and noise~cf. Ref. @17#!. Most such
works studied the effect of noise on transport propert
within a chaotic attractor or layer or web. In Ref.@22#, the
dependence on noise intensity for noise-induced interatt
tor hoppings in some multiattractor map with transient cha
was studied in simulations. But neither of these works st
ied how transient chaos~arising due to periodic driving! af-
fects the noise-induced escape.

In conclusion, we have found the range ofG where the
decrease of the lifetime by the nonadiabatic periodic driv
is at a maximum: depending on parameters, it is eitheG
→0 or G;A. In the former case, we provide aquantitative
theory for the maximum decrease of the activation ene
(;A) while, in the latter case, we estimate it qualitative
(;AA). The underlying mechanisms are~i! transient chaos
if G→0, and~ii ! a resonant~saturated! mechanism@5# if G
;A.

The work was supported by INTAS~Grant Nos. 97-574
and 00 YSF 4126!. We are grateful to M. I. Dykman for
useful discussions.
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