
PHYSICAL REVIEW E 86, 066407 (2012)

Onset of treelike patterns in negative streamers
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We present analytical and numerical studies of the initial stage of the branching process based on an
interface dynamics streamer model in the fully three-dimensional case. This model follows from fundamental
considerations on charge production by impact ionization and balance laws, and leads to an equation for the
evolution of the interface between ionized and nonionized regions. We compare some experimental patterns
with the numerically simulated ones, and give an explicit expression for the growth rate of harmonic modes
associated with the perturbation of a symmetrically expanding discharge. By means of full numerical simulation,
the splitting and formation of characteristic treelike patterns of electric discharges is observed and described.
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I. INTRODUCTION

It is a well known visible fact that electric discharges form
treelike patterns, very much like those in coral reefs and
snowflakes. The study of the branching process leading to such
patterns is of considerable interest both from pure and applied
points of view. Many industrial techniques, ranging from lasers
to chemical processing of gases and water purification could be
improved provided the development of treelike patterns can be
controlled or avoided. Although an electric discharge is a very
complex phenomenon, with radiation and chemistry processes
involved [1–3], the description of its initial stage is simpler.
A single free electron traveling in a strong, uniform electric
field ionizes the gaseous molecules around it, generating more
electrons and starting a chain reaction of ionization. The
ionized gas creates its own electric field, which speeds up the
reaction, and a streamer is born. The streamers of ionized gas
have an inevitable tendency to break up at their tips, followed
by the creation of the familiar treelike pattern.

Early efforts [4–7] were able to identify a minimal
streamer model with which, after numerical simulations under
the hypothesis of cylindrical symmetry, an instability was
observed [8–10]. Later on, the dispersion relation for planar
fronts was computed and the existence of an instability leading
to the development of fingers was found [11]. Due to the
enormous difficulty in performing full numerical simulations
of the streamers model, some different approaches have
been attempted in recent years (see [12,13] for a review
where various different approaches are discussed and a very
thorough mathematical analysis of the contour problem by
the moving boundary expert Saleh Tanveer with coauthors is
referred to; see also [14,15]). The influence of microscopic
corrections such as photoionization or local electron density
fluctuations has been addressed and incorporated into the
models and corresponding simulations, showing acceleration
of the ionization front (cf. [16–19]).

In any case, the fully three-dimensional (3D) case has
proved to be very difficult. As an alternative approach (the
one we follow in this work), the motion and propagation of the
streamer discharge has recently been described by a contour
dynamics model first introduced in Ref. [20] and used to
successfully predict some experimental features of discharges

on dielectric surfaces [21,22]. The contour dynamics model
describes the interface separating a plasma region from a
neutral gas region. For a negative discharge, the separating
surface has a net charge σ and the thickness goes to zero as√

D, with D the charge diffusion coefficient. The interface
moves with a velocity in the normal direction

vN = −μeE
+
ν + 2

√
De

l0
μe|E+

ν | exp

(
− Eion

|E+
ν |

)
− Deκ, (1)

where E+
ν is the normal component of the electric field at

the interface when approaching it from outside the plasma
region, μe is the electron mobility, De is the electron diffusion
coefficient, Eion is a characteristic ionization electric field, and
κ is twice the mean curvature of the interface. The parameter
l0 is the microscopic ionization characteristic length.

The total negative surface charge density at the interface
changes according to

∂σe

∂t
+ κvNσe = −E−

ν

�e

− j−
ν , (2)

where E−
ν is the electric field at the interface coming from

inside the plasma, �e is a parameter proportional to the
resistivity of the electrons in the created plasma, and j−

ν is
the current contribution at the surface of any source inside the
plasma. For instance, an insulated wire inside the plasma at x0,
carrying an electric current I (t), will create a current density
inside the plasma and as quasineutrality is fulfilled, for the
plasma region we will have

∇ · j = I (t)δ(x − x0), (3)

and j is obtained solving that equation. Note that at the interface
there is an electric field discontinuity given by

E+
ν − E−

ν = −eσ

ε0
. (4)

Using the contour dynamics model, we first present the
simulations and the onset of the treelike patterns. Then we
proceed by studying the stability of the interface and show how
the instability grows calculating the dispersion curve, which
gives information about the stability-instability of transversal
modes. We end with some discussions about the experimental

066407-11539-3755/2012/86(6)/066407(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.066407
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predictions in two-dimensional (2D) and 3D situations and
some remarks.

The technical details are left for the Appendix. There,
the spherical discharge in the case of finite conductivity, the
stability analysis, and the analytical limits of infinite resistivity
and ideal conductivity are presented in some detail. The
numerical method is also described in more detail.

II. SIMULATIONS AND THE SPLITTING OF FINGERS

In this section we present the numerical studies of the
initial stage of the branching process based on an interface
dynamics streamer model in the fully 3D case. The splitting
and formation of characteristic treelike patterns of electric
discharges is observed and described.

It is convenient to express the model in dimensionless
units. The physical scales are given by the ionization length
l0, the characteristic impact ionization field Ei , and the
electron mobility μe. The velocity scale yields U0 = μeEi ,
and the time scale τ0 = l0/U0. Typical values of these
quantities for nitrogen at normal conditions are l0 ≈ 2.3 μm,
Ei ≈ 200 kV/m, and μe ≈ 380 cm2/V s. The unit for the
negative surface density reads σ0 = ε0Ei/e; so for the current
density j0 = σ0U0/l0 and for the resistivity �0 = μel0/σ0.
The diffusion constant unit becomes D0 = l0U0. Introducing
dimensionless units, the model reads

vN = −E+
ν + 2

√
εα(|E+

ν |) − εκ, (5)
∂σ

∂t
+ κvNσ = −E−

ν

�
− j−

ν , (6)

being that

α(|E+
ν |) = |E+

ν | exp

(
− 1

|E+
ν |

)
, (7)

and ε = De/D0 the dimensionless diffusion coefficient. In
what follows all the quantities are dimensionless unless
otherwise indicated. We have used an adaptive boundary
element method, developed for general contour dynamics
problems [23,24], in order to perform numerical simulations
with Eqs. (5) and (6). Here we present numerical results
assuming that the plasma is ideally conducting, so that E+

ν is
computed by solving the Laplace equation with the following
boundary conditions: (1) V behaves linearly at infinity, where
a constant electric field is imposed and (2) V = V0 constant at
the plasma surface (with the constant to be determined from
the condition that the net charge is given). The key point of the
numerical simulation is the calculation of the charge density,
proportional to E+

μ in the case of an ideal conductor: We can
write the potential V as

V = −Ex3 + V ′,

where

�V ′ = 0 outside �(t), (8)

V ′ = Ex3 + V0 at the boundary of �(t), (9)

V ′ = O(|x|−1) as |x| → ∞, (10)

E is the electric field fixed at infinity, and �(t) is the domain
occupied by the plasma. The equation for the charge density

at the points x0 = (x0,1,x0,2,x0,3) of the plasma interface is

V (x0) = 1

4πε0

∫
∂�(t)

σ (x)

|x − x0|dS(x) − Ex0,3 (11)

or, since V (x0) is constant,

Ex0,3 + V0 = 1

4πε0

∫
∂�(t)

σ (x)

|x − x0|dS(x) (12)

and we can write σ = V0σ0 + σind, where σind is the charge
density induced by the external electric field and defined as
the solution to the integral equation

Ex0,3 = 1

4πε0

∫
∂�(t)

σind(x)

|x − x0|dS(x) (13)

and σ0 is therefore the solution to

1 = 1

4πε0

∫
∂�(t)

σ0(x)

|x − x0|dS(x). (14)

The constant V0 is determined by the condition

Q = V0

∫
∂�(t)

σ0(x)dS(x) +
∫

∂�(t)
σind(x)dS(x), (15)

where Q is kept constant during the simulation.
In Fig. 1 we show numerical simulations of the evolution

of the discharge at four time steps. The plasma is charged with
integrated surface charge Q = −25, subject to an external
field in the vertical direction E = 0.5, and confined inside
an initially spherical geometry perturbed by r0(θ,φ) = R0 +
δ0 exp{−[cos2(φ) + cos2(θ )]/c}, with R0 = 1, c = 0.03, and
δ0 = 0.1. We first observe the onset of streamer fingers.
At time t = 0.17 the streamers develop further instabilities
and split again. Qualitatively the process can be described
in the following terms: Any protuberance that develops is
accompanied by an increase of the charge density at its tip.
The electrostatic repulsion of charges at the tip tends to make
the tip expand and the finger grow. In opposition to this is the
action of the surface tension tending to flatten the protuberance
and setting up a flux of charge from the protuberance out to the
sides. However, overall, the protuberance becomes amplified.
This process occurs again and again until a treelike pattern
is produced. In Fig. 2 we depict a detail of this pattern
(see also [25] for the development of this multiple branching
process). Those ideas where anticipated in Ref. [8], but due
to the restriction of 2D simulations the whole process of the
branching pattern formation could not be observed.

III. INSTABILITY GROWTH AND THE
DISPERSION CURVE

In this section we will make a linear perturbation analysis
in order to show that the results of the numerical simulations
can be anticipated and some features predicted. In order to be
quantitative, we can calculate the growth rate of the different
modes, both analytically and numerically. If an initial spherical
symmetry interface is perturbed by a small amount, some
instabilities will start growing. We will study which instability
modes are going to prevail during the front evolution.

We consider a spherically expanding plasma, representing a
corona discharge, with Q(t) < 0 so that E0=E+

ν = Q(t)
4πR(t)2 < 0.
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(a) Initial configuration

(b) t= 0.0794

(c) t= 0.1438

(d) t= 0.1769. The encircled region is
enlarged in figure 2

FIG. 1. (Color online) Evolution of the plasma for Q = −25,
E = 0.5, and ε = 0.02. Color gradation represents curvature. The
initial perturbation is a bump concentrated in θ = π for φ = [0,2π ].

Then, R(t) is given as the solution of

dR

dt
= −

(
Q(t)

4πR
+ 2ε

)
1

R
+ 2ε1/2

√
α(|E+

ν |). (16)

FIG. 2. (Color online) Detail of the shape of the plasma at t =
0.1769.

If Q(t) = Q, it is easy to check (see the Appendix, Sec. 1) that

R(t) ≈
(

3 |Q|
4π

t

)1/3

, (17)

for the early stages of the discharge and as long as R � |Q|
ε

.
This is in agreement with predictions based on continuum
streamer models [26,27]. If the position of the front as well
as the charge density are changed by a small amount, the
perturbed quantities can be parametrized as

r(θ,φ,t) = R(t) + δS(θ,φ,t), (18)

σ (θ,φ,t) = − Q(t)

4πR2(θ,φ,t)
+ δ�(θ,φ,t), (19)

where δ is a small parameter. The angles θ (colatitude) and
φ (longitude) are the usual spherical coordinate ones. The z

axis is in the vertical direction. For convenience we write the
surface perturbation in terms of spherical harmonics as

S =
∞∑
l=1

l∑
m=−l

slm(t)Ylm(θ,φ), (20)

and the surface charge density perturbation as

� = −
∞∑
l=1

l∑
m=−l

(
2l + 1

R
blm + Q(t)

4πR2

l + 1

R
slm

)
Ylm(θ,φ),

(21)

where the coefficients slm(t) and blm have to be determined.
Making a standard expansion of the dynamics contour model
equations (5) and (6) (see the Appendix, Sec. 2), up to linear
terms, we get the equations for the particular mode evolution

dslm

dt
=

[
ε1/2

√
α0 sgn [Q(t)]

|E0|
(

1 + 1

|E0|
)

− 1

]
(l + 1)

R
blm

+
[
ε1/2√α0

(
1 + 1

|E0|
)

− E0 − ε(l + 2)

R

]
(l − 1)

R
slm,

(22)

dblm

dt
= (l2 − 1)E0

(2l + 1)R

[
2E0 + (l + 4)ε

R
− (εα0)1/2

(
3 + 1

|E0|
)]

slm − I (t)(l + 1)

4πR2(2l + 1)
slm

+
[

(l2 + 4l + 2)

(2l + 1)
E0 + 2ε

R
− ε1/2

√
α0

(2l + 1)

(
l2 + 6l + 3 + (l + 1)2

|E0|
)

− lR

(2l + 1)�

]
blm

R
. (23)

066407-3



M. ARRAYÁS, M. A. FONTELOS, AND U. KINDELÁN PHYSICAL REVIEW E 86, 066407 (2012)

1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

l

ω

ε = 0.15
ε = 0.2
ε = 0.25
ε = 0.3
ε = 0.35
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FIG. 3. (Color online) Analytical (in black) and numerical dis-
persion curves for different values of the diffusion coefficient ε. The
abscissa corresponds to the spherical harmonics number, and the
ordinate to the growth rate for that mode.

We can get information about the growth of different modes
by analyzing two special limits. First we study the limit of
ideal conductivity. It corresponds to � → 0, and hence, from
(23), we can conclude that blm → 0. This is the case when
in the limit of very high conductivity, the electric field inside
goes to zero (E−

ν → 0), as we approach to the behavior of a
perfect conductor. If we consider that Q(t) = Q0 is constant
or its variation in time is small compared with the evolution
of the modes [which also implies I (t) → 0], and the same
for the radius of the front R(t) = r0, we look for a solution
slm = exp(ωt), ϕn = 0, to (22), and get a discrete dispersion
relation of the form

ω =
[
ε1/2√α0

(
1 + 1

|E0|
)

− E0 − ε(l + 2)

r0

]
(l − 1)

r0
,

(24)

with a maximum at

l = lmax � |E0|r0

2ε
, (25)

for ε � 1. For a small enough conductivity � → ∞, we find
blm = −E0slm(l + 1)/(2l + 1), and with slm = exp(ωt), (22)
yields

ω =
[
ε1/2√α0

(
1 + 1

|E0|
)

− E0

]
(l2 − 3l − 2)

(2l + 1)r0

− ε(l + 2)(l − 1)

r2
0

, (26)

with a maximum at

l = lmax � |E0|r0

ε
, (27)

for ε � 1. Note that the dispersion relation does not depend
on m. The finite resistivity cases lay between those limits. In
Fig. 3 we have plotted the analytical curves given by (24) for
different values of ε and the results of numerical calculations
for a perfect conductor. The numerical calculations are done
in the following way: We take a spherical front and introduce
a small perturbation in the form of a spherical harmonic Ylm

times a small parameter δ. By tracing the evolution of that
front using the numerical method reported in Sec. II (see the
Appendix, Sec. 4, for details about the numerical method) and
tracking the maximum distance of the points of the surface
to the center of the sphere, we find that it is the radius of the
unperturbed sphere plus a perturbation with an amplitude that

grows exponentially δ exp(ωlt)Ylm. Hence, we can compute
the dispersion relation ωl as a function of l. In Fig. 4 in the
Appendix we present the initial perturbed sphere with Y10,10

and the result of the evolution after some time.
The dispersion curve allows one to predict the expected

number of branches that will develop. Each branch will
undergo also a further split and so on, propagating to the
smaller scales. However, it cannot run forever, as there is a
limitation and the model does not take into account the energy
radiated, the heat exchange, and the other phenomena that will
start to play an important role at later stages of the discharge.

IV. CONCLUSIONS

The results presented in this work confirm the hypothesis
that at the earlier stages of an electric discharge, the main
driving forces are diffusion and electrical drift, first anticipated
in Ref. [8]. The expressions obtained for the growth rate of the
modes, given by (24) and (26), enables one to predict the
number of forks that one can expect in an electric discharge
provided the electric field and the diffusion constant are known
by other means. But, the opposite can be worked out: From
the numbers of fingers observed, we can, for example, infer
the electric field if the charge density at the interface and the
diffusion constant are known. This has been done for the 2D
case [21]. Here follows a brief account of the 2D experiment
discussed there. A discharge is created on a dielectric surface
using a positive tip and branching is observed. The electric
potential along the streamers is measured using Pockels
crystals, laser pulses, and a CCD camera. Using typical values
for the mobility μe and E0, from the dispersion relations the
diffusion coefficient D was estimated and thus the number of
fingers one may expect in such experiments. This number
is calculated from the maxima of the dispersion relations.
Counting the number of real fingers in the experimental
pictures [22], the number was around 20, and our prediction
was n ≈ 14.

The model presented here, when considered for a per-
turbation of a planar front, predicts an instability in the
form of fingers, whose spacing agrees with the prediction
of the full minimal streamer model, which was compared in
Ref. [28] with available experimental data by Raether [29]. The
separation of the fingers turns out to be λmax ∼ (De/E0)0.33,
at a given gas pressure, where E0 is the applied electric field.
The experimental values for the exponent for nonattaching
gases such as N2 and Ar are 0.32 and 0.34, respectively. This
prediction allows one to also compute the local electric field if
the number of fingers is known.

For the 3D case, there is a lack of quantitative experimental
data for electric field along the discharge. The charge density
could be used to calculate the electric field and it might
be obtained from Stark’s effect measurements, but we have
not found any data available. Thus an effective diffusion
coefficient might be approximately calculated, and the number
of fingers predicted. Or alternatively, from the branching
observed, by using formula (25) or (27) the effective diffusion
could be obtained if the local electric field is known or vice
versa, the local electric field can be inferred if the effective
electron diffusion coefficient is given.
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In conclusion, the results presented in this work may
contribute to achieving one of the main goals, both in the
laboratory and in nature, of the current research in the area of
electric discharges: bringing the field from a qualitative and
descriptive era to a quantitative one.
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APPENDIX

1. Solutions with symmetry

The electric potential created by a negative surface charge
distribution with radial symmetry at the distance R is found
by solving

�V = σδ(R). (A1)

The solution turns out to be in spherical coordinates

V (x) =
{
C/|x|, |x| > R

C/R, |x| � R,
(A2)

where C will be determined by the condition of the electric
field jump (4) at the surface. From the potential solution we
can compute the electric field

E−
ν = 0, E+

ν = C

R2
. (A3)

For the current density, the solution of (3) gives

j = I (t)

4πR3
R,

and finally using (6) and the fact that vN = dR/dt and κ =
2/R, we get

∂σ

∂t
+ 2

R

∂R

∂t
σ = − I (t)

4πR2
. (A4)

This equation can be easily solved. We can write it as

∂(R2σ )

∂t
= −I (t)

4π
,

to get

σ = − Q(t)

4πR2
, with Q(t) =

∫ t

0
I (t) dt,

where we have assumed that σ (0) = 0. Now we can see from
the condition (4) that C = Q(t)/4π , so

E+
ν = Q(t)

4πr2
.

Then the interface evolves according to (5) as

dR

dt
= −

(
Q(t)

4πR
+ 2ε

)
1

R
+ 2ε1/2

√
α(|E+

ν |). (A5)

It can be seen that diffusion will accelerate the front through
the term ε1/2 as far as the curvature becoming small. A

perturbation of the front will be made smooth by this term,
meanwhile electric field will do the opposite.

Next, we shall analyze two limiting cases. First the case
where

R2 � |Q(t)|
8πε1/2

√
α[|Q(t)/4πR2|]

and ε � |Q(t)|
8πR

.

(A6)

Then expression (A5) results in

dR

dt
≈ − Q(t)

4πR2
, (A7)

so

R(t) ≈
(

R(0)3 −
∫ t

0
3Q(t ′)/4π dt ′

)1/3

. (A8)

For the particular case Q(t) = Q is constant,

R(t) ≈ [R(0)3 − 3tQ/4π ]1/3. (A9)

The second case is the opposite. If

R 
 |Q(t)|
8πε1/2

√
α[|Q(t)/4πR2|]

and ε � |Q(t)|
8πR

, (A10)

we now have
dR

dt
≈ 2ε1/2

√
α[|Q(t)/4πR2|]. (A11)

For the particular case Q(t) = Q, we obtain

R(t) =
[ |Q|

2π
log

(
4t

√
πε

|Q|
)]1/2

. (A12)

2. Stability analysis

If the spherical symmetry is perturbed by a small amount,
some instabilities will start growing as shown in the figures.
We will study in this section which instability modes are going
to prevail during the front evolution.

If the position of the front as well as the charge density are
changed by a small amount, the perturbed quantities can be
parametrized as

r(θ,φ,t) = R(t) + δS(θ,φ,t), (A13)

σ (θ,φ,t) = − Q(t)

4πR2(θ,φ,t)
+ δ�(θ,φ,t), (A14)

where R(t) is given by Eq. (A5), i.e., the radial symmetrical
front, and δ is our bookkeeping small parameter for the
expansions which follow. The angles θ and φ are the spherical
coordinate ones.

We will start calculating the correction to the electric field
due to the geometrical perturbation of the surface and the extra
charge deposited on it. The electric potential will be up to δ

order

�(x) = V (x) + δVp(x),

with V being the solution we used in the previous section
for the symmetrical problem. The term Vp(x) will satisfy the
equation

�Vp = O(δ),
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and further on, we will change coordinates to

x −→ x̃ = x
R(t)

r(θ,φ,t)
,

so the perturbed surface becomes a sphere of radius R(t).
Now at zero order Vp satisfies the Laplace equation with the
boundary being a sphere. Hence we have in the new spherical
coordinates

Vp(r̃ ,θ ) =
⎧⎨
⎩

∑∞
l=1

∑l
m=−l almYlm(θ,φ)

(
R
r̃

)l+1
, r̃ > R∑∞

l=1

∑l
m=−l blmYlm(θ,φ)

(
r̃
R

)l
, r̃ � R,

(A15)

where it is imposed that Vp remains finite at the origin and
at very large distances becomes zero. Note the sums start at
l = 1, as for l = 0 we have just a constant.

Since the potential at the surface position coming from the
exterior is

�(x+
s ) = V (x+

s ) + δVp(x+
s ) = Q(t)

4π

1

R + δS
+ δVp(x+

s )

= Q(t)

4π

(
1

R
− δ

S

R2

)
+ δVp(x+

s ) + O(δ2),

and from the interior is

�(x−
s ) = V (x−

s ) + δVp(x−
s ) = C(R(t),t) + δVp(x−

s ),

where C(R(t),t) is a function independent of θ , imposing the
condition of continuity for the potential, we have

Vp(x+
s ) = Vp(x−

s ) + S
Q(t)

4πR(t)2
.

If we write the surface perturbation as

S =
∞∑
l=1

l∑
m=−l

slm(t)Ylm(θ,φ), (A16)

we find that the coefficients of the potential in Eq. (A15) are
related by

alm = blm + Q(t)

4πR2
slm, (A17)

where R = R(t).
Using expressions (A15)–(A17) and changing back coordi-

nates from x̃ to x, the normal components of the electric field
at both sides of the surface are

E+
ν = Q(t)

4π (R + δS)2
+ δ

∞∑
l=1

l∑
m=−l

(
blm + Q(t)

4πR2
slm

)

× (l + 1)

R
Ylm(θ,φ) + O(δ2), (A18)

E−
ν = −δ

∞∑
l=1

l∑
m=−l

blm

l

R
Ylm(θ,φ). (A19)

Then, from the jump condition (4), the charge perturbation
in Eq. (A14) results as

� = −
∞∑
l=1

l∑
m=−l

(
2l + 1

R
blm + Q(t)

4πR2

l + 1

R
slm

)
Ylm(θ,φ).

(A20)

We still need the expression of twice the main curvature at δ
order to find the dynamics of the front. In spherical coordinates,
it yields (see, for instance, [30])

κ = 2

R
− 2S + �ωS

R2
δ + O(δ2),

where �ω is the Laplace operator on the unit sphere

�ω = 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2
, (A21)

which has the property

�ωYlm = −l(l + 1)Ylm.

Also we need the normal component of the velocity up to first
order

vN = v · n = dR(t)

dt
+ δ

∂S(θ,t)

∂t
+ O(δ2). (A22)

So the contour model equation (5), to first order gives

dR

dt
+ δ

∂S(θ,t)

∂t

= − Q(t)

4πR2
+ δS

Q(t)

2πR3

− δ

∞∑
l=1

l∑
m=−l

(
blm + Q(t)

4πR2
slm

)
l + 1

R
Ylm(θ,φ)

+ 2ε1/2
√

α0 + δα1 − ε

(
2

R
− δ

2S + �ωS

R2

)
, (A23)

where we have written the Townsend function (7) up to first
order as α = α0 + δα1 + O(δ2). We can expand that function
as

|E0 + δE1|e−(1/|E0+E1δ|)

≈ |E0|e−(1/|E0|) + δ sgn(E0)E1

(
1 + 1

|E0|
)

e−(1/|E0|)

= α0 + δα1,

so that
√

α = √
α0 + δ

α1

2
√

α0

= √
α0

[
1 + δ sgn [Q(t)]

E1

2|E0|
(

1 + 1

|E0|
)]

,

being

E0 = Q(t)

4πR2
,

E1 =
∞∑
l=1

l∑
m=−l

[blm(l + 1) + E0slm(l − 1)]
Ylm(θ,φ)

R
,

obtained from expanding (A18) in δ as E+
ν = E0 + δE1 +

O(δ2).
Taking into account (A5) for the zero order term, we get

from (A23),

∂S

∂t
= S

Q(t)

2πR3
−

∞∑
l=1

l∑
m=−l

(
blm + Q(t)

4πR2
slm

)
l + 1

R
Ylm

+ ε
2S + �ωS

R2
+ ε1/2 α1√

α0
, (A24)
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and finally making use of the expansion (A16) for the
perturbation S yields (22).

The correction to the charge density evolution comes from
(6),

∂σ

∂t
+ κvNσ = − 1

�
E−

ν − I (t)

4πR2
.

We multiply it by r2(θ,φ,t), and substituting the curvature
expansion we can write

∂(r2(θ,φ,t)σ (θ,φ,t))
∂t

− r2(θ,φ,t)
�ωS

R2
vNσ (θ,φ,t) δ

= − r2(θ,φ,t)

�
E−

ν − I (t)

4π
.

Note we have used that

r2(θ,φ,t)vNσ (θ,φ,t) = r2(θ,φ,t)vNσ (θ,φ,t)

R

−Sr2(θ,φ,t)vNσ (θ,φ,t)δ

R
+ O(δ2),

following to δ order

∂(R2�)

∂t
+ �ωS

R2

Q(t)

4π

dR

dt
= R

�

∞∑
l=1

l∑
m=−l

blmYlm(θ,φ)l.

(A25)

Finally, making use of (A5), (A16), and (A20), we get

− d

dt

(
R(2l + 1)blm + Q(t)

4πR
(l + 1)slm

)

= Q(t)

4πR2

dR

dt
l(l + 1)slm + Rl

�
blm,

or after simplifying,

(2l + 1)
dblm

dt
+ Q(t)

4πR2
(l + 1)

dslm

dt

= −(l + 1)(l − 1)
Q(t)

4πR3

dR

dt
slm − (l + 1)

I (t)

4πR2
slm

− (2l + 1)

R

dR

dt
blm − l

�
blm.

Using (A5), (A24), and (22),

(2l + 1)
dblm

dt
+ (l + 1)E0

{[
ε1/2

√
α0 sgn [Q(t)]

|E0|
(

1 + 1

|E0|
)

− 1

]
(l + 1)

R
blm

+
[
ε1/2√α0

(
1 + 1

|E0|
)

− E0 − ε(l + 2)

R

]
(l − 1)

R
slm

}

= (l + 1)(l − 1)
E0

R

[
E0 + 2ε

R
− 2ε1/2√α0

]
slm − (l + 1)

I (t)

4πR2
slm + (2l + 1)

R

[
E0 + 2ε

R
− 2ε1/2√α0

]
blm − l

�
blm,

and after rearranging the terms Eq. (23) follows. Thus the time
evolution of each particular mode has been obtained and it is
governed by (22) and (23).

3. Special limits

We can get information of the dispersion curve by analyzing
two special limits. First we study the limit of ideal conductivity.
It corresponds to � → 0, and hence, from (23), we can
conclude that blm → 0. This is the case when in the limit
of very high conductivity, the electric field inside goes to
zero (E−

ν → 0), as we approach the behavior of a perfect
conductor. If we consider that Q(t) = Q0 is constant or its
variation in time is small compared with the evolution of
the modes [which also implies I (t) → 0], and the same for
the radius of the front R(t) = r0, we look for a solution
slm = exp(ωt), ϕn = 0, to (22), and get the discrete dispersion
relation (24).

Next we consider the limit of finite resistivity, but such that
the total charge is constant at the surface, or varies very slowly.
Writing (23) as

(2l + 1)
d

dt
(rblm) = − d

dt

(
Q(t)

4πr
(l + 1)slm

)

− Q(t)

4πr2

dr

dt
l(l + 1)slm − rl

�
blm,

we now have
dblm

dt
= − Q0

4πr2
0

(l + 1)

(2l + 1)

dslm

dt
− l

(2l + 1)�
blm. (A26)

For a small enough conductivity � → ∞ so no extra charge
reaches the surface, we find blm = −E0slm(l + 1)/(2l + 1),
and with slm = exp(ωt), Eq. (22) yields the relation (26).

4. Brief explanation of the numerical method

Our interest in the evolution of the surface suggests the use
of the boundary element method to calculate the velocity at
the interface. At any given time t > 0, we approximate the
free boundary ∂D(t) with a triangular mesh. On each node of
the mesh we approximate the various physical quantities that
are defined on the surface (charge density, curvature, velocity)
with elementwise constant functions over a “virtual” element
centered in each node with an area equal to one-third of the
total area of the elements that share the node (see [31]). We
also use the nodes of the mesh as collocation points.

The general description of how we solve the equations is
as follows: First we calculate the curvature κ in each node
of the mesh; second, we calculate the surface charge density
(and hence the electric field at the boundary) by solving, using
the boundary element method, the integral equations relating
the surface charge density and the electric field Eqs. (13)
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FIG. 4. (Color online) Evolution of a perturbed sphere of plasma
for integrated surface charge Q = 25 and diffusion coefficient ε =
0.02. Top: the sphere is initially perturbed with the spherical harmonic
Y10,10 and δ = 0.01. Bottom: shape of the plasma at t = 0.1279.

and (14). Given the resulting velocity v, we move the points
of the surface using the explicit Euler scheme and regularize

and refine the mesh if necessary. In order to be able to resolve
tips and tip splitting with the necessary precision, an adaptive
technique is involved. The adaptivity is achieved in two ways:
(1) by moving the nodes towards regions or large curvature
and (2) by splitting triangles into three subtriangles. The
first procedure consists in adding a tangential “spring force”
between neighbor nodes, which depends on the local curvature.
In this way, once a tip starts to appear, it tends to attract its
neighbors and the process induces a clustering of nodes in
the critical regions. The second procedure is done in such
a way that the quality of the triangulation is not lost and the
triangles do not become too deformed. Further details on these
procedures can be found in Refs. [23,24]. Finally, we remark
that boundary conditions, such as electric field far away from
the streamer, do not need to be imposed separately since they
automatically appear in the boundary integral formulation of
the problem.

Furthemore, in order to verify the correctness of our
dispersion relation, we take spheres and introduce a small per-
turbation in the form of a spherical harmonic Ylm times a small
parameter δ. By tracing the evolution of the maximum distance
of the points of the surface to the center of the sphere, we find
that it is the radius of the unperturbed sphere plus a perturbation
with an amplitude that grows exponentially, δ exp(ωlt)Ylm.
Hence, we can compute the dispersion relation ωl as a function
of l. In Fig. 4 we present the initial perturbed sphere with Y10,10

and the result of the evolution after some time.
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