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a b s t r a c t 

In this paper we study the lateral instability in a discharge channel using a continuum model. We observe 

analogies with the onset of Kelvin-Helmholz instability in fluids. In strong electric fields, lateral long 

wave length perturbations can grow while small wave length perturbations diminish during the discharge 

evolution. We perform numerical simulations and carry out asymptotic analysis of the instability. 
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. Introduction 

Electric discharges pose interesting questions from both ap- 

lied and fundamental research. They appear in a vast variety 

f phenomena, ranging from dielectric breakdown in low tem- 

erature plasmas and semiconductors [1–3] . In the last decades 

rogress has been made in the understanding of different aspects 

f the phenomena of ionization fronts such as of the study of the 

ranching [4] . In the case of the study of branching, the problem 

as some analogies to a Laplacian growth instability where the a 

lasma channel propagates in a neutral media, driven by an exter- 

al field. There is a competing effect of the drift and the diffusion 

f the charge that brings the growth an instability to the propagat- 

ng front [5–7] . 

The situation investigated here is the following: the discharge 

oes in the horizontal direction triggered by the external field 

hich points in that direction. We consider the boundary of the 

ischarge parallel to the initial external field (unlike previous 

orks where the ionization front is perpendicular to the external 

lectric field). As a result, a boundary layer of charge imbalance 

ppears and the study of its stability is the subject of the present 

ork. Close enough we can approximate the interface as a planar 

ne, and introduce a small geometrical perturbation of the charge 

istribution. We study how this perturbation grows or decreases. 

ote that the drift motion of the charge is parallel to the streamer 

urface and the perturbation of the straight path occurs transversal 

o the electric field as depicted in Fig. 1 . 

Our results yield an instability for long wave modes at an in- 

erface which is expanding under strong field conditions at con- 
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tant velocity. In this sense, it is similar to the situation aris- 

ng in other context such as the development of liquid filaments 

t the interface of two parallel fluid flows due to the Kelvin- 

elmholtz instability, leading to sprouting of filamentary structures 

8] . Kelvin-Helmholtz instability occurs due to a jump of the tan- 

ential mass flux across the interface. This discontinuity induces a 

wirling motion and characteristic spiral patterns at the interface. 

n the present context, charged particles are drifted by the elec- 

ric field and one can expect that across the interface due to the 

hange in the conductivity between air and plasma, charge density 

evelops discontinuities so that an instability somehow analogous 

o Kelvin-Helmholtz’s arises. Here we present the first numerical 

nd analytical studies pointing in that direction. Our results shows 

hat at early stages, the onset of the lateral instabilities resembles 

 Kelvin-Helmholtz one. 

The outline of the paper is the following. First we introduce 

 continuum model of a discharge channel. This set of equations 

as the minimal ingredients to describe the process while they are 

menable for making analytically progress. Then we study travel- 

ing waves solutions for the charge densities and compute them. 

he stability analysis is carried out by introducing a geometrical 

erturbation and calculating a dispersion relation for the modes. 

hus we are able to identify the stable and unstable modes. In or- 

er to test the analytical results we perform numerical simulations. 

s predicted we find that initial perturbations of the planar fronts 

ff small wave lengths diminishes and eventually disappears while 

arger wave length perturbations increase. 

. The model 

We will take a model similar to the standard minimal one 

hich was successfully used in the study of branching [3–5] . Ion- 
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Fig. 1. A schematic of the case considered, where a planar interface parallel to the 

external field separates two ionized and non-ionized regions. The arrows indicate 

the direction of the imposed external electric field. Boundary conditions and initial 

conditions are also indicated and also the kind of perturbation introduced. The size 

of the simulation box in dimensionless units are also plotted. 
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zation will be the only process taken into account for the genera- 

ion of charge. However we will add a saturation constraint due to 

he fact that the ionized channel is depleted of neutral particles so 

onization is not allowed inside the plasma. 

The balance equations for the electron, positive and neutral 

ensities, N e,p and N, will be written as 

∂N e 

∂τ
+ ∇ R · J e = S e , (1) 

∂N p 

∂τ
= S p , (2) 

∂N 

∂τ
= S. (3) 

ote that at small time-scales the positive ion current can be ne- 

lected as it is more than two orders of magnitude smaller than 

he electron current. If the neutral gas is not moving on average, 

here will be no net transport for the neutral particles either, so 

he balance equations for positive and neutral particles take the 

orm given by (2) and (3) . The electron current can be written as

 e (R , τ ) = −μe E N e − D e ∇ R N e , where E is the electric field and μe 

nd D e are the mobility and diffusion coefficients of the electrons. 

he electric field evolution is governed by the Poisson equation, 

 R · E = 

e 

ε 
( N p − N e ) , (4) 

here ε is the permittivity of the gas and e the absolute value of 

he charge of positive ions e (if it is not the case a Z number taking

nto account the charge of the ions has to be introduced which can 

e removed with an appropriated scaling of the variables). 

Now let us introduce the constrain on the production of the 

harged particles. We will assume that initially we have a neutral 

as of density N 0 , so at any time we will have 

 0 = N p + N, (5) 

nd from that follows, that the source terms S p = −S. On the 

ther hand, due to charge conservation S e = S p , which relates 

ll the source terms. Considering the production of charge 

y ionization in Townsend’s approximation [6] we get S e = 

 e μe | E | Nσ exp ( −E i / | E | ) . 
The densities can be scaled by the initial neutral gas density, 

hus n e = N e /N 0 , n p = N p /N 0 . The scattering cross section of the

onization process sets a characteristic length R 0 = 1 /N 0 σ, and the 

ollision time τ0 = ε/eN 0 μe a time scale. Introducing the dimen- 

ionless coordinates r = R /R 0 , t = τ/τ0 , the dimensionless elec- 

ric field E = E εσ/e, and the dimensionless diffusion constant D = 
2 
 e N 0 σ
2 ε/eμe , the model reads 

∂n e 

∂t 
= ∇ · ( n e E + D e ∇n e ) + n e (1 − n p ) | E | e −α/ | E | , 

∂n p 

∂t 
= n e (1 − n p ) | E | e −α/ | E | , 

 · E = n p − n e . (6) 

here α = E i εσ/e is a dimensionless parameter. 

Close enough to the discharge channel we will assume that 

he interface can be approximated by a plane, so we will study 

he case of a expanding channel with a planar symmetry. We will 

ake Cartesian coordinates on the interface along the x -axis and z- 

xis, and a constant external field parallel to the interface, given 

y E ext = E x 0 u x where E x 0 > 0 and u x is an unitary vector in the x

irection, as schematically depicted in the Fig. 1 . We need to pro- 

ide the boundary conditions for the system (6) according to the 

ituation considered. Asymptotically at z → −∞ we have the dis- 

harge channel fully ionized, so n e = n p = 1 and the electric field

ill be the external one E = E x 0 u x . At z → + ∞ the system is neu-

ral and there is not charge, so n e = n p = 0 . For the x direction we

ill assume periodic conditions. 

. Analysis of the instability 

Here we make analytical calculations for the onset of the insta- 

ility observed. We expand the densities and the electric field in a 

mall ε parameter in the following form 

n e = φe (ξ ) + εn 

(1) 
e (x, z, t) + O (ε2 ) , 

 p = φp (ξ ) + εn 

(1) 
p (x, z, t) + O (ε2 ) , (7) 

E = E (0) 
x e x + 

√ 

D E (0) 
z (ξ ) e z + εE 

(1) (x, z, t) + O (ε2 ) . 

here 

= 

z − ε f (x, t) √ 

D 

− ct. (8) 

ero order terms represent travelling waves solutions and the func- 

ion f (x, t) represents the geometrical perturbation of such so- 

utions. Together with the first order terms allow the asymptotic 

nalysis of the instability. 

To keep amenable the mathematical analysis and highlight the 

hysical results, we will restrict it to the condition that | E | e −α/ | E | ≈
 , which is a sensible choice provided that | E | ≈ E x 0 = 1 , i.e. we 

ave a strong external electric field, and the ionization critical field 

s lower than this external field, which allows to take the α → 0 

imit. Under that limit, the equations (6) get a simpler form, 

∂n e 

∂t 
= ∇ · ( n e E + D ∇n e ) + n e (1 − n p ) , (9) 

∂n p 

∂t 
= n e (1 − n p ) , (10) 

 · E = n p − n e . (11) 

Introducing the perturbation in the form given by (7) and ex- 

anding in powers of ε, we get travelling waves in the zero order 

pproximation. 

Travelling waves The travelling waves to zero order can be ob- 

ained numerically by a shooting technique as seen in Fig. 2 . 

We find travelling waves solutions which decay at ξ → −∞ as 

e = 1 − A 1 e 
α1 ξ − A 3 e 

β1 ξ (12) 

p = 1 − B 1 e 
β1 ξ , (13) 
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Fig. 2. Negative and positive charge densities φe and φp for a planar travelling 

wave. 
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z , for the travelling wave of Fig. 2 , diminishing 

at large distances. 
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(0) 
z = E 3 e 

α1 ξ + E 1 e 
β1 ξ , (14) 

here A 1 , A 3 , B 1 , E 1 and E 3 are constants determined by the bound-

ry conditions and α1 > β1 the corresponding positive eigenvalues 

hat can be written in terms of the wave velocity c. The behaviour 

f such travelling waves for ξ → + ∞ is 

e = A 2 e 
−β2 ξ , (15) 

p = B 2 e 
−β2 ξ , (16) 

 

(0) 
z = E 0 + E 2 e 

−β2 ξ , (17) 

here again A 2 , B 2 , E 0 and E 2 are constants and β2 > 0 the corre-

ponding eigenvalue that can be expressed as a function of c. A 

tandard shooting technique allows then to determine the appro- 

riate value of c so that the exponential decays in (12) - (17) are sat-

sfied. Notice that to zero order, if E 0 is non vanishing, there is an

lectric field at infinity in the z-direction due to the contribution 

f the travelling wave unbalanced charged. Indeed considering the 

imit D → 0 it can be shown that the travelling wave propagating 

peed c reaches an extremum if E 0 = 0 , and in this case, c ≈ 2 . 0 . 

The travelling wave solution for E 0 = 0 is such that the pro- 

le for negative charges is, due to their larger mobility, slightly 

head/behind the profile for positive charges as z approaches 

lus/minus infinity, as shown in Fig. 2 . This leads to a profile for

he net charge that changes sign at the interface and decays fast at 

nfinity. Thus, charges closed to the interface in a region of O ( 
√ 

D )

hickness are unbalanced and creates an electric field in the trav- 

lling wave direction, as it can be seen in Fig. 3 . Nevertheless, the

act that negative charges are mobile (due to drift by the elec- 

ric field and diffusion) while the positive charges are not indicates 

hat such dipolar configuration cannot remain stable when the in- 

erface is not flat. This fact will be visible at the next order. 

Onset of instabilities Next we make a coordinate transformation 

t, x, z) → (t, x, ξ ) with ξ given by (8) , so (9) can be arranged to

ead up to second order in ε

∂n e 

∂t 
−

(
c + ε

f t √ 

D 

)
∂n e 

∂ξ
− E ·

(
∂ 

∂x 
− ε

f x √ 

D 

∂ 

∂ξ
, 

1 √ 

D 

∂ 

∂ξ

)
n e 

D 

(
∂ 2 

∂x 2 
+ 

1 

D 

∂ 2 

∂ξ 2 
− ε

f xx √ 

D 

∂ 2 

∂ x∂ ξ

)
= n e (1 − n e ) + O (ε2 ) 

(18) 
3 
Now we have the freedom to take f such it satisfies to first 

rder, 

f t + f x − E (1) 
z | ξ=0 + D f xx = 0 , (19) 

n which appears the z component of the electric field perturbation 

valuated at ξ = 0 . Choosing f to fulfill (19) , the electron density 

harge perturbation is governed 

∂n 

(1) 
e 

∂t 
−

(
c + E (0) 

z 

)∂n 

(1) 
e 

∂ξ
−∂n 

(1) 
e 

∂x 
− ε

∂ 2 n 

(1) 
e 

∂ξ 2 
− εD 

∂ 2 n 

(1) 
e 

∂x 2 

= (1 − 2 φe ) n 

(1) 
e , 

(20) 

fter making the expansion up to ε order. The equation for the 

volution of n (1) 
e turns out to be a homogeneous one, so as par- 

icular solution is given by n (1) 
e = 0 . Electrons are mobile and may 

ollow a geometrical perturbation without changes in their density. 

owever, this is not the case for n (1) 
p . The physical argument is that 

he positive charge do not move, so the perturbation of the elec- 

ron density implies the appearance of an extra charge in addition 

o the one created by the travelling wave, thus implies a non-trivial 

orrection to the positive charge. Let us find this correction. 

The equation (10) for n p can be rewritten as 

∂ 

∂t 
log (1 − n p ) = n e , 

nd then, expanding in f we obtain at leading order after taking 

he particular solution n (1) 
e = 0 , 

∂ 

∂t 
− c 

∂ 

∂ξ

)( 

φ′ 
p f/ 

√ 

D + n 

(1) 
p 

1 − φp 

) 

= 

1 √ 

D 

φ′ 
e f . 

Using now the fact that for zero order travelling waves 

−c 
∂ 

∂ξ

)(
φ′ 

p 

1 − φp 

)
= φ′ 

e , 

e deduce the following equation for n (1) 
p , 

∂ 

∂t 

(
φ′ 

p f/ 
√ 

D + n 

(1) 
p 

)
− c(1 − φp ) 

∂ 

∂ξ

(
n 

(1) 
p 

1 − φp 

)
= 0 . (21) 

f we try now a solution of the form n (1) 
p = N 

(1) 
p (ξ ) e λt F (x ) and

f (x, t) = e λt F (x ) we obtain (
φ′ 

p / 
√ 

D + N 

(1) 
p 

)
− c(1 − φp ) 

∂ 

∂ξ

(
N 

(1) 
p 

1 − φp 

)
= 0 . (22) 

We will need also the first order contribution to the electric 

eld. Introducing a scalar electric potential 

 = −x + DV 

(0) (ξ ) + εV 

(1) , 
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tom. The initial perturbation of the electronic density moves towards left, drifted 

by the electric field while decreases its amplitude. 

4

n

c

d

e  

w

t

t  

r  

t

p  

d

t

e can write (11) as 

∇V = −
(
−1 , 

√ 

D V 

′ (0) 
)

 ε
(√ 

D f x V 

′ (0) + 

∂ V (1) 

∂x 
, − 1 √ 

D 

∂ V (1) 

∂ξ

)
. 

Thus the Laplacian to first order reads 

�V = −V 

′′ (0) + ε
√ 

D f xx V 

′ (0) − ε�V 

(1) , 

here V ′ (0) = 

∂ V (0) 

∂ξ
, thus at first order in ε we get expression 

�V 

(1) = −
√ 

D f xx 
∂V 

(0) 

∂ξ
+ n 

(1) 
p , (23) 

his allows us to compute the electric field 

 

(1) 
z = −∂V 

(1) 

∂z 
, 

hose value at ξ = 0 has to be inserted into the equation (19) for

he evolution of f (x, t) . 

From (22) , using the asymptotic behaviour of the travelling 

aves given by (13) and (16) , we get the asymptotic form of n (1) 
p =

 

(1) 
p (ξ ) e λt F (x ) 

 

(1) 
p ∼

{
N 

−
1 

e μ1 ξ , as ξ → −∞ , 

N 

+ 
1 

e −μ2 ξ , as ξ → + ∞ 

(24) 

ith 

 

−
1 = B 1 μ1 / 

√ 

D , N 

+ 
1 = 

λB 2 μ2 

λ
√ 

D + cμ2 

√ 

D 

(25) 

Taking F (x ) = exp (ikx ) and Fourier transforms, the solution 

urns out to be 

 

(1) 
z = −

√ 

D k 2 H( 
√ 

D k ) − G 1 ( 
√ 

D k ) 

+ 

λ√ 

D λ + 

√ 

D cμ2 

G 2 ( 
√ 

D k ) , (26) 

here 

(s ) = 

1 

2 π

∫ ∞ 

−∞ 

(
ν2 (E 2 − E 1 ) + β2 

1 E 2 − β2 
2 E 1 

)(
s 2 + ν2 

)(
ν2 + β2 

1 

)(
ν2 + β2 

2 

)ν2 dν, (27) 

nd 

 1 , 2 (s ) = 

1 

2 π

∫ ∞ 

−∞ 

B 1 , 2 μ1 , 2 (
s 2 + ν2 

)(
ν2 + μ2 

1 , 2 

)ν2 dν. (28) 

Thus we can use (19) to deduce the dispersion relation 

λ + ik − Dk 2 + Dk 2 H( 
√ 

D k ) + G 1 ( 
√ 

D k ) 
λ√ 

D (λ+ cμ2 ) 
G 2 ( 

√ 

D k ) = 0 . 
(29) 

n the limit D small we can approximate it as (
1 + 

G 2 ( 
√ 

D k ) √ 

D cμ2 

)
≈ ik − Dk 2 + Dk 2 H( 

√ 

D k ) + G 1 ( 
√ 

D k ) . 

he onset on the instability starts when Re (λ) → 0 , which in terms

f s c = 

√ 

D k c implies 

 1 (s c ) = s 2 c (1 − H(s c )) (30) 

One can compute travelling waves solutions as plotted in 

ig. 2 and 3 and get the values β1 
 0 . 37 , E 1 
 0 . 67 , β2 

 . 8 , E 2 
 2 . 71 , μ1 
 0 . 5 , B 1 
 0 . 4 , μ2 
 0 . 9 , B 2 
 7 . 4 . . Using the

efinitions (27) and (28) it can be numerically estimated the value 

f s c as s c 
 0 . 5 and hence instabilities may take place for 

 

D 

2 π

λ
� 0 . 5 (31) 

mplying λ � 12 . 6 
√ 

D , i.e. long wave length instabilities for such 

alues. 
4 
. Numerical simulations 

For testing the behaviour of the stability of the discharge chan- 

el, we perform some numerical simulations. We take Cartesian 

oordinates and put the interface at z = 0 as sketched in Fig. 1 . 

The boundary conditions for the densities are periodic in the x - 

irection and of Dirichlet type in the z-direction. For the Poisson 

quation, zero flux is taken at the z boundaries, i.e. u z · E = 0 and

e fix the electric potential at the x boundaries so there is an ex- 

ernal electric field of E x 0 = 1 intensity in dimensionless units. For 

he initial conditions, the interface is situated at z = 0 , with z < 0

epresenting the ionized channel filled with n e = n p = 1 and z > 0

he non-ionized region with n e = n p = 0 . 

The numerical simulations in Figs. 4 –5 correspond to take the 

arameter appearing in the system (6) α = 1 and D = 0 . 02 for the

iffusion coefficient. To study the stability of the channel, we in- 

roduce a geometrical perturbation of the interface adding a sinu- 
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Fig. 5. Electronic density levels evolution at times 0.1, 0.3 and 0.7 from top to bot- 

tom. The initial perturbation of the electronic density moves towards left, drifted 

by the electric field but the amplitude increases. 
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oidal displacement to the densities distributions around z = 0 and 

hen following the evolution. 

The simulations presented in Figs. 4 –5 has been realized in a 

igger box of 2 × 2 of dimensionless units using a finite element 

ethod. We used the commercial package COMSOL Multiphysics 

oftware to perform the FEM modeling [9] . In the figures we plot 

he electron densities at different times 0.1, 0.3, 0.7. 

As expected we observe that the perturbation moves to the left, 

riven by the electric field. At the same time the ionized region 

xpands, and the channel increases the size in the z-direction due 

o creation of charge by impact ionization and diffusion. We plot 

wo cases, one with a small wave length and other with a bigger 
5 
ave length. According with the previous analysis, perturbations 

f wave lengths smaller than a critical value will disappear while 

igger than the critical value will growth. 

In Fig. 4 we have introduced a small wave length perturbation 

f 0.25 in dimensionless unit. We observe that the perturbation 

iminishes and eventually disappears. However, when the wave 

ength perturbation is 1, the perturbation increases as shown in 

ig. 5 . 

. Conclusion 

Using a basic model of a discharge channel we have been able 

o identify an instability mechanism. We have found evidence of 

he onset of long wave instabilities, similar to the Kelvin-Helmholtz 

ype in fluid dynamics. The evidence of the growth of long wave 

erturbations has been obtained both theoretically and numeri- 

ally, by asymptotic analysis of the geometrical perturbation of a 

lanar travelling wave and solving the model using a finite ele- 

ent method. We note that the development of lateral instabilities 

reates inhomogeneities of the electric field in a similar fashion as 

elvin-Helmholtz instability in fluids creates perturbations in the 

therwise one-directional velocity field. 

Let us remark that additional effects could be incorporated into 

he model, such as photoionization, magnetic fields, interactions 

etween two or more channels, etc. Each new physical effect in- 

orporates an extra characteristic length to the problem and eluci- 

ate the dominant instability mechanism could be the next step to 

ddress the robustness of the instability mechanism that we have 

escribed here. 
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