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A B S T R A C T

We present a method for calculating the stability region of a perfect diamagnet levitated in a magnetic
field created by a circular current loop making use of the machine learning techniques. As an application
we compute stability regions, points of stable equilibrium and stable oscillatory motions in two chip-based
superconducting trap architectures used to levitate superconducting particles. Our procedure is an alternative
to a full numerical scheme based on finite element methods which are expensive to implement for optimizing
experimental parameters.
1. Introduction

Levitation [1] has been the guiding idea for the very recent design
of a device to explore superfluidity regimes [2]. In order to levitate
diamagnetic materials, it is crucial to find the stability region in a
given magnetic field configuration. The problem reduces to identify the
place where the energy of the system obtains a minimum. To achieve
levitation, the total force on the object must vanish thus the gradient of
the energy should be zero. However, that condition is not enough, we
also need to impose that the Laplacian of the energy will be positive,
so the equilibrium is stable. Solving the problem involves to get the
magnetic fields and their derivatives, mostly in forms of gradients
and Hessians. Here is where some techniques of machine learning are
applied, in particular automatic differentiation (AD) which is at the
heart of deep learning [3].

We will study the case of finding the stability region in the field
created by circular current loops, which involves the use of elliptic
functions. There are available ready-to-try packages for deep learning
applications ranging from image and speech recognition, genome-based
taxonomic classification, drug research and so on. Normally the stan-
dard functions used in these packages are limited to a set of basic
functions, like the sigmoids [4]. When considering the magnetic field
created by a circular loop we will be dealing with elliptic functions.
We will code explicitly the AD rules for elliptic integrals of the first
and second kind [5].

Once we have an appropriate method to deal with magnetic levita-
tion techniques, we will apply it to find the stability regions of some
recent chip-based superconducting magnetic traps [6,7], which may
give us as a promising platform for performing quantum experiments
with microparticles. The full numerical scheme based on finite element
methods are expensive to implement in terms of time and resolution
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which is inconvenient to optimize experimental parameters. Our ap-
proach allows a fast way to explore and optimize the design of actual
prototypes of magnetic traps.

2. The field of a circular current loop

Let us summarize the classical solution of finding the field created
by a circular current loop of radius 𝑎 [8]. We take our origin of
coordinates at the center of the loop and 𝑥𝑦 the plane containing the
loop. Thus the current density is given by

𝐼𝑑𝐬 = −𝐼 sin𝜙 𝐢 + 𝐼 cos𝜙 𝐣, (1)

the position 𝐫𝑖 of the loop by

𝐫𝑖 = 𝑎 cos𝜙 𝐢 + 𝑎 sin𝜙 𝐣, (2)

and, defining 𝑅 = |𝐫 − 𝐫𝑖|, we have

𝐀(𝐫) =
𝜇0𝐼
4𝜋 ∮

𝑑𝐬
𝑅

, (3)

for the vector potential in the Coulomb gauge. Taking cylindrical
coordinates (𝑟, 𝜙, 𝑧), it can be proved [9] that

𝐴𝜙 =
𝜇0
4𝜋

4𝑎𝐼
√

(𝑟 + 𝑎)2 + 𝑧2

(

2 − 𝑘2

𝑘2
𝐾(𝑘2) − 2

𝑘2
𝐸(𝑘2)

)

=
𝜇0
4𝜋

4𝐼
√

𝑎
𝑟

[( 1
𝑘
− 𝑘

2

)

𝐾(𝑘2) − 1
𝑘
𝐸(𝑘2)

]

, (4)

where 𝑘2 = 4𝑎𝑟∕[(𝑟 + 𝑎)2 + 𝑧2] and the elliptic integrals of the first and
second type are defined as

𝐾(𝑚) = ∫

𝜋
2

0

𝑑𝜃
√

1 − 𝑚 sin2 𝜃
, 𝐸(𝑚) = ∫

𝜋
2

0
𝑑𝜃

√

1 − 𝑚 sin2 𝜃. (5)
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The magnetic field can then be calculated as

𝐵𝑟 = −
𝜕𝐴𝜙

𝜕𝑧
, 𝐵𝑧 =

1
𝑟
𝜕(𝑟𝐴𝜙)
𝜕𝑟

, (6)

hich already involves derivatives of the elliptic integrals.

. The stability conditions for a perfect diamagnet

Having obtained the magnetic field in Section 2, we introduce the
tability conditions for a perfect diamagnet [1]. When an isotropic
inear magnetic material of mass 𝑚 is introduced in a magnetic field,
he induced magnetic moment reads

(𝐫) = 𝜒 𝐁(𝐫)
𝜇0

, (7)

where 𝜒 is the magnetic susceptibility and 𝜇0 is the permeability of
acuum. The change in the free energy 𝑓 of the system kept at constant
emperature reads

𝑓 = 𝑚𝑔 𝑑𝑧 +𝐦 ⋅ 𝑑𝐁. (8)

or a perfect diamagnet, we have 𝜒 = −1 and the free energy reads

(𝐵) = 𝑓0 + 𝑚𝑔𝑧 − 𝐵2

2𝜇0
, (9)

where 𝑓0 is the free energy of the body at zero field and 𝐵2 is the
squared modulus of the magnetic field. At equilibrium, we must have
a minimum, so the conditions to fulfill are

𝑑𝑓 = 0,

𝑑2𝑓 < 0. (10)

The second condition provides the stability of the levitation. Using (9),
it turns into

∇2𝐵2 > 0. (11)

In consequence, to levitate a perfect diamagnet in a magnetic field, we
need not only that the total force on the diamagnet is zero (condition
𝑑𝑓 = 0 in (10)), but also that Eq. (11) holds.

4. Numerical computation of stability conditions using automatic
differentiation

4.1. The method

Numerical differentiation based on finite difference approximations
are easy to implement but can be inaccurate due to truncation errors.
Normally for computing gradients and Hessian one can use an inter-
polation scheme, but can be highly inefficient and the scaling is very
poor [3]. Manual differentiation and symbolic methods often result in
rather long expressions as the complexity of derivatives computed by
symbolic differentiation grows exponentially, [10] and afterwards we
need to evaluate numerically the final expression.

Automatic differentiation (AD) allows the evaluation of derivatives
at machine precision. If we arrange the inputs in a vector 𝐱 and
the outputs in a vector 𝐲 we get the deep learning function 𝐲 =
𝐹 (𝐱). Normally the deep learning function have the form 𝐹 (𝐱) =
𝐿𝑘(𝑁𝑘−1(𝐿𝑘−1(𝑁𝑘−1(...𝑁1(𝐿1(𝐱)))))) where 𝐿 and 𝑁 are linear and non-
linear functions. The linear functions 𝐿 are affine functions 𝐿𝑖(𝐱) =
𝐴𝑖𝐱 + 𝐛𝑖 where the 𝐴𝑖 and 𝐛𝑖 are called the weights, and 𝑖 runs across
the so called neural layers. The problem in deep learning is to find the
weights to minimize a total loss function over the sample data [11].
This is an optimization problem like finding the stability region for the
levitation of our diamagnet.

In AD there are two variants. The forward mode differentiation,
represented symbolically as (𝜕∕𝜕𝑋) and the reverse mode or back
propagation represented as (𝜕𝑍∕𝜕) [12]. AD is based on the basic
fact that ultimately all numerical computations involve a finite set
2

𝑔

of elementary operations. For example to compute 𝐸(𝑘2) defined in
Section 2 the finite steps needed are

𝑦1 = 4𝑎,

𝑦2 = 𝑦1 ∗ 𝑟,

𝑦3 = 𝑟 + 𝑎,

𝑦4 = 𝑦23,

𝑦5 =
𝑦2
𝑦4

,

𝑦6 = 𝑧2,

𝑦7 = 𝑦5 + 𝑦6,

𝑦8 = 𝐸(𝑦7). (12)

Those steps constitute a Wengert list [13] which can be represented in a
directed computational graph. When calculating derivatives, the graph
is augmented with the extra calculations involved. The computational
problem is how to travel the graph in an efficient way and that deter-
mines the two implementations of AD, the forward and the backward
mode [3].

Forward mode can be implemented very efficiently using dual
numbers [14]. When we calculate the derivatives, the number of terms
in the Wengert list starts growing. For example, compare the lists to
compute 𝐸(𝑥2),

𝑦1 = 𝑥2,

𝑦2 = 𝐸(𝑦1), (13)

and 𝑑𝐸(𝑥2)∕𝑑𝑥,

𝑦1 = 𝑥2,

𝑦2 = 𝐸(𝑦1),

𝑑𝑦1 = 𝑥1,

𝑑𝑦2 = 2 ∗ 𝑑𝑦1,

𝑑𝑦3 = 2 ∗ 𝑦1,

𝑑𝑦4 = 𝑦2∕𝑑𝑦3,

𝑑𝑦5 = 𝑑𝑦4 ∗ 𝑑𝑦2,

𝑑𝑦6 = 𝐾(𝑦1),

𝑑𝑦7 = −𝑑𝑦6,

𝑑𝑦8 = 2 ∗ 𝑦1,

𝑑𝑦9 = 𝑑𝑦7∕𝑑𝑦8,

𝑦10 = 𝑑𝑦9 ∗ 𝑑𝑦1,

𝑦11 = 𝑑𝑦5 + 𝑑𝑦10. (14)

e could try to remove from the list the values that will not be needed
n further steps, for example after evaluating 𝑑𝑦5 we could forget about
𝑦4. However, 𝑦2 is used at step 𝑑𝑦4 so it needs to be kept during further
teps.

Dual numbers provide evaluation of Wengert list in a very efficient
ay. A dual number is like a complex number, where the imaginary

ymbol 𝑖 is replaced by another symbol 𝜖 being a nilpotent number of
ndex 2, i.e 𝜖2 = 0. So we can write any dual number as 𝑎 + 𝑏𝜖. If for
ny function 𝑔(𝑥) we take the truncated Taylor series expansion [15]
nd write it as 𝑔+ 𝑔′𝜖 this dual representation will propagate the usual
ules of differentiation, for example the product rule

𝑔 + 𝑔′𝜖)(ℎ + 𝑔′𝜖) = 𝑔ℎ + (𝑔ℎ′ + ℎ𝑔′)𝜖.

ow let us extend any real function 𝑔(𝑥) to dual numbers by defining

(𝑎 + 𝑏𝜖) ≡ 𝑔(𝑎) + 𝑔′(𝑎)𝑏𝜖.

he chain rule will propagate automatically using the algebra of dual
umbers when taking as the argument the dual number 𝑥 + 𝜖,

′ ′ ′
(ℎ(𝑥 + 𝜖)) = 𝑔(ℎ(𝑥) + ℎ (𝑥)𝜖) = 𝑔(ℎ(𝑥)) + 𝑔 (ℎ(𝑥))ℎ (𝑥)𝜖.
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Fig. 1. The transversal plane cut 𝑥𝑧. The shaded area is the stability region where
∇2𝐵2 > 0.

Thus to implement the extension of the real functions to dual numbers
we have to provide explicitly the derivative of the functions involved.
In the case of elliptic integrals, from (5) it is straightforward to obtain

𝐾 ′(𝑚) =
𝑑𝐾(𝑚)
𝑑𝑚

=
𝐸(𝑚)

2𝑚(1 − 𝑚)
−

𝐾(𝑚)
2𝑚

,

𝐸′(𝑚) =
𝑑𝐸(𝑚)
𝑑𝑚

=
𝐸(𝑚) −𝐾(𝑚)

2𝑚
. (15)

For instance to find the magnetic field created by the circular loop [9]
we compute the derivative of 𝐸(𝑘2) following the dual number rules,

𝐸((𝑥 + 𝜖)2) = 𝐸(𝑥2 + 2𝑥𝜖) = 𝐸(𝑥2) + 2𝑥𝐸′(𝑥2)𝜖,

and substituting (15)

𝑑𝐸(𝑘2)
𝑑𝑘

=
𝐸(𝑘2) −𝐾(𝑘2)

𝑘
.

In the same way the derivative of 𝐾(𝑘2) is calculated,

𝑑𝐾(𝑘2)
𝑑𝑘

=
𝐸(𝑘2)

𝑘(1 − 𝑘2)
−

𝐾(𝑘2)
𝑘

.

Those expressions allow us to find the explicit expression of the mag-
netic field using (6) and (4).

4.2. An example of implementation

For the implementation of the dual number algorithm of the AD
forward mode, we have made use of the Julia lenguage [16]. In
particular we took the package ForwardDiff.jl [17]. That library depends
on another library called DiffRules.jl [18]. This last library contains the
file rules.jl, which implements the extension of the elementary functions
to dual numbers. At present it lacks of the elliptic functions support, but
it can be easily edited and the expressions (15) added.

We are ready to find the stability region of a perfect diamagnet in
the magnetic field produced by a circular current loop. Our recipe reads
as follows: taking a cross section, calculate the left hand side of (11)
using the AD forward mode algorithm discussed in the previous section,
and code in gray color the condition of being positive. The result is
shown in Fig. 1, where the 𝑥𝑧 plane is taken. The loop is in the 𝑥𝑦
plane and cuts the 𝑥𝑧 plane at points 𝑥 = ±1.

5. Levitation of nanospheres in some chip-based superconducting
traps

Let us explore with our technique the problem of trapping
micrometer-sized particles in chip-based superconducting devices.
Chip-based superconducting trap architectures are capable of levitating
micrometer-sized superconducting particles in the Meissner state [6].
3

Fig. 2. Transversal plane cut 𝑥𝑧. The areas colored in red and green are stable, with
∇2𝐵2 > 0, while the areas colored in blue are unstable, with ∇2𝐵2 < 0. Regions colored
in red are stable points in which, moreover, the vertical component of the magnetic
force is bigger than the gravity force. The horizontal component of the magnetic force
should be zero in order to achieve levitation. As a consequence, the only point in
which the sphere can be levitated at rest is the center of the configuration, and it can
move in a vertical oscillatory motion around the center with an amplitude smaller than
0.5 μm in order to avoid blue regions. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

These architectures can be very useful for performing quantum exper-
iments [7]. In order to achieve stable levitation, the magnetic force
must balance the gravity force inside the stability area. That can be
done by fine tuning the mass of the diamagnet and the current intensity
circulating in two loops built in a chip substrate.

5.1. Anti-Helmholtz coil-trap

The first architecture studied in [6] is an anti-Helmholtz coil-trap.
Two circular current loops are placed one above the other, both of
them with axes along the 𝑧 direction. The center of the loop in the
bottom is placed at (𝑥, 𝑦, 𝑧) = (0, 0,−0.5) μm, and the center of the other
loop is at (𝑥, 𝑦, 𝑧) = (0, 0, 0.5) μm. Both coils have 2 μm diameter and
carry the same electric current 𝐼 = 30mA in opposite directions. The
perfect diamagnet levitated is a sphere of 0.5 μm radius with a mass of
4.487 × 10−15 kg.

The stability regions are shown in Fig. 2, in which cylindrical
symmetry is considered, so we plot the 𝑥𝑧 plane. Areas colored in red
and green are stable regions, in which the total magnetic field produced
by the coils satisfies the stability condition ∇2𝐵2 > 0. Areas colored
in blue are the unstable regions in which ∇2𝐵2 < 0. Moreover, in
order to achieve stable levitation, the magnetic force must balance the
gravity force. We have plotted in red the regions in which the vertical
component of the magnetic force on the sphere is equal or bigger than
the gravity force and the region is stable. However, the horizontal
component of the magnetic force has to be taken into account too,
without gravity to balance it. As a consequence, it is only possible to
find a point of stable equilibrium in the vertical axis 𝑥 = 0. All these
considerations lead to the following conclusions:

• The only point of stable equilibrium in this configuration is the
center of the architecture, located at (𝑥, 𝑦, 𝑧) = (0, 0, 0).

• The sphere can move vertically in a oscillatory motion around the
center of the configuration, but the amplitude of this motion has
to be smaller than 0.5 μm in order to avoid unstable regions.

5.2. Concentrical coil-trap

The second architecture of superconducting trap [6] we consider is
a double loop trap. In this case, two circular current loops are placed
in the same plane, with centers at the same point (𝑥, 𝑦, 𝑧) = (0, 0, 0). The
inner coil diameter is 12 μm and the outer coil diameter is 18 μm. Both
coils carry the same electric current 𝐼 = 38mA in opposite directions.
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Fig. 3. Transversal plane cut 𝑥𝑧. The areas colored in red and green are stable, with
∇2𝐵2 > 0, while the areas colored in blue are unstable, with ∇2𝐵2 < 0. Regions colored
in red are stable points in which the vertical component of the magnetic force is bigger
than the gravity force. The horizontal component of the magnetic force has to be zero
too, so the only point in which the sphere can be levitated at rest is the point in
the axis 𝑥 = 0 which is in the intersection of the regions in red and green, close to
𝑧 = 3μm. The sphere can make a vertical oscillatory motion of small amplitude around
this point. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

The perfect diamagnet levitated is a sphere of 5 μm radius with a mass
of 4.487 × 10−12 kg.

In Fig. 3, we plot the stability regions of the double loop architecture
in the 𝑥𝑧 plane, because cylindrical symmetry is assumed. Regions
colored in red and green are stable and regions colored in blue are
unstable. In order to achieve stable levitation, we have to impose that
the vertical component of the magnetic force balance the gravity force.
We have plotted in red the regions in which the vertical component
of the magnetic force is equal or bigger than the gravity force and the
region is stable. The horizontal component of the magnetic force has
to be zero, so it is only possible to find a point of stable equilibrium in
the vertical axis 𝑥 = 0. The conclusions we find in this case are:

• The only point of stable equilibrium in this configuration is the
point in the vertical axis 𝑥 = 0 which is in the intersection of the
green area and the red area.

• The sphere can move vertically in a oscillatory motion around
that point, but the amplitude of this motion has to be small so
the sphere avoid the unstable region.

6. Conclusions

In situations related to levitation of perfect diamagnets by magnetic
fields, the calculation of the stability region is critical. The need for an
efficient method to replace finite element methods in order to speed up
the process of tuning experimental parameters motivated our study. We
have made use of some tools encountered in deed learning. In particular
the concept of dual numbers, which allows us to implement the forward
mode of the automatic differentiation.

We have studied the problem of finding the region of stability of a
perfect diamagnet in magnetic fields created by circular current loops.
The algorithms develop are applied to the case in which two chip-based
superconducting trap architectures are used to levitate micrometer-
sized superconducting particles [6]. Our method allows us to obtain
4

the stability regions of both structures, the points in which particles
may rest and the kind of motions that the levitating objects can make
in a stable way.

These examples help to understand how machine learning methods
can be used to design complex levitation experiments. Machine learning
methods are well suitable for such problems. They allow us to speed up
the process of exploring the parameters set-up involved in the building
of actual levitation systems [2].
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