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A B S T R A C T

In this work we find new null electromagnetic fields that are exact solutions of Maxwell equations in vacuum
and generalize the hopfion. The hopfion is an exact solution of Maxwell equations in vacuum in which all
the field lines (both electric and magnetic) are topologically equivalent to closed and linked circles, forming a
mathematical structure called Hopf fibration. Here we present a generalization to include other field lines
topology, such as the Seifert fibration in which the field lines form linked torus knots. Included in this
generalization are fields that ergodically fill torus surfaces.
1. Introduction

The search for solutions of Maxwell equations with non-trivial
topology was pioneering by Antonio F. Rañada. In a seminal paper [1]
he found the first example of an electromagnetic knot, the celebrated
hopfion [2]. The hopfion is an electromagnetic field in which all the
field lines are topologically equivalent to linked and closed circles.
The topology of the field lines implies some interesting physical con-
sequences and some attempts to find new solutions has been carried
on. There has been in the literature two main directions for trying
to generalize Rañada solutions and find more complex fibrations in
Maxwell equations in vacuum.

In [3], the hopfion was generalized so that the new electromagnetic
fields still satisfied the same null conditions as the hopfion. The null
conditions impose the Lorentz invariants of the field to be zero, i.e., 𝐄 ⋅
𝐁 = 0 and 𝐸2 − 𝑐2𝐵2 = 0. The magnetic lines of the new solutions
were organized around a set of core field lines which are closed and
form (𝑛, 𝑚) linked torus knots when 𝑛 and 𝑚 are integers and coprimes.
The hopfion is contained in this class for the particular values 𝑛 =
𝑚 = 1. However, not all the field lines at every instant of time had
the topology of the Seifert fibration. It is important to note that, in
these new solutions, the electromagnetic fields cannot be written as in
Rañada’s formulation of electromagnetic knots,

𝐁(𝐫, 𝑡) =

√

𝑎
2𝜋𝑖

∇𝜙 × ∇𝜙̄
(1 + 𝜙𝜙̄)2

, (1)

𝐄(𝐫, 𝑡) =

√

𝑎𝑐
2𝜋𝑖

∇𝜃̄ × ∇𝜃
(1 + 𝜃𝜃̄)2

, (2)

where 𝜙(𝐫, 𝑡) and 𝜃(𝐫, 𝑡) are complex fields, the bar over the fields
denoting complex conjugation. The constant 𝑎 is defined so that the

∗ Corresponding author.
E-mail address: joseluis.trueba@urjc.es (J.L. Trueba).

magnetic and electric fields have the right dimensions (MKS units are
used) and 𝑐 is the speed of light in vacuum. Note that, as a consequence,
the constraint imposed by the condition that all the magnetic field lines
are level curves of a complex scalar field 𝜙 and all the electric lines are
level curves of a complex scalar field 𝜃 is not guaranteed.

In [4], the generalization was done in the complex fields 𝜙 and
𝜃, but the fields did not satisfy the null conditions. New solutions,
covering the topology of the whole torus knots set and having the
hopfion as a particular case, were found. In those solutions, all the
magnetic lines and all the electric lines were initially linked (𝑛, 𝑚) torus
knots, so Seifert fibration was obtained at 𝑡 = 0, but this structure was
not maintained when 𝑡 ≠ 0.

In this work, we consider the problem of finding exact solutions of
Maxwell equations in vacuum such that

1. The magnetic and electric fields have to be given by complex
scalar fields 𝜙 and 𝜃 as in Eqs. (1)–(2).

2. The magnetic and electric fields have to satisfy the null condi-
tions 𝐄 ⋅ 𝐁 = 0 and 𝐸2 − 𝑐2𝐵2 = 0.

In our solutions, at a particular time (𝑡 = 0 without loss of generality)
we find cases where the field lines are linked and closed (both magnetic
and electric). Those cases constitute a generalization of the Hopf fibra-
tion, including a Seifert fibration. Moreover, the new family of solution
also include cases in which the field lines ergodically fill torus shape
regions.

2. Complex scalar fields and the null condition

Since, in [4], Seifert fibrations were found at 𝑡 = 0, we will use a
similar, though more general, choice of the complex scalar fields 𝜙 and
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𝜃,

=
(𝑣1 + 𝑖 𝑣2)(𝑛)

(𝑣3 + 𝑖 𝑣4)(𝑚)
, (3)

𝜃 =
(𝑣2 + 𝑖 𝑣3)(𝑛)

(𝑣1 + 𝑖 𝑣4)(𝑚)
, (4)

where 𝑛 and 𝑚 are positive real numbers and the notation 𝑓 (𝑛), 𝑓 being
a complex function, means

𝑓 (𝑛) =
𝑓 𝑛

(𝑓𝑓 )(𝑛−1)∕2
. (5)

e will take

1(𝐫) = 𝑋
√

𝑅2 + 𝛿2
, (6)

𝑣2(𝐫) = 𝑌
√

𝑅2 + 𝛿2
, (7)

𝑣3(𝐫) = 𝑍
√

𝑅2 + 𝛿2
, (8)

𝑣4(𝐫) = 𝛿
√

𝑅2 + 𝛿2
, (9)

so that 𝑣21 + 𝑣22 + 𝑣23 + 𝑣24 = 1. The hopfion case corresponds to
the particular choice 𝛿 = (𝑅2 − 1)∕2, 𝑛 = 𝑚 = 1. The 𝑋, 𝑌 , 𝑍
symbols represent dimensionless Cartesian coordinates. The physical
coordinates 𝑥, 𝑦, 𝑧 can be obtained using the relations

𝑥 = 𝐿0𝑋, 𝑦 = 𝐿0𝑌 , 𝑧 = 𝐿0𝑧, (10)

𝐿0 being a constant with dimensions of length related to the mean
quadratic radius of the electromagnetic energy distribution [5]. The
positive dimensionless radial coordinate 𝑅 is also defined, so that 𝑟 =
𝐿0𝑅, with

𝑟2 = 𝑥2 + 𝑦2 + 𝑧2 = 𝐿2
0(𝑋

2 + 𝑌 2 +𝑍2) = 𝐿2
0𝑅

2. (11)

We will consider the case 𝛿 being a function of the square of the
radial coordinate 𝑅, thus

𝛿 = 𝛿(𝑅2). (12)

By using the Rañada formulation (1)–(2), the magnetic and electric
fields associated to the complex scalar fields (3)–(4) are

𝐁 =

√

𝑎

𝜋𝐿2
0(𝑅

2 + 𝛿2)2
[−𝑚𝑀 (𝑌 ,−𝑋, 𝛿)

− 𝑛𝑁𝑍 (𝑋, 𝑌 ,𝑍) − (𝑛 − 𝑚)𝛿𝑀 (0, 0, 1)] , (13)

𝐄 =
𝑐
√

𝑎

𝜋𝐿2
0(𝑅

2 + 𝛿2)2
[𝑚𝑀 (𝛿,𝑍,−𝑌 )

+ 𝑛𝑁𝑋 (𝑋, 𝑌 ,𝑍) + (𝑛 − 𝑚)𝛿𝑀 (1, 0, 0)] . (14)

In these equations, we have defined

𝑀 = 𝛿 − 2𝑅2𝛿′, (15)
𝑁 = 1 + 2𝛿𝛿′, (16)

and

𝛿′ = 𝑑 𝛿
𝑑𝑅2

. (17)

Now, we impose null conditions 𝐄 ⋅ 𝐁 = 0 and 𝐸2 − 𝑐2𝐵2 = 0 to the
nitial fields (13)–(14). What we get is that both null conditions are
atisfied as long as

𝑚2𝑀2 + 𝑛2
(

2𝑀𝑁𝛿 +𝑁2𝑅2) = 0, (18)

here 𝛿 is a function of 𝑅2 and 𝑀, 𝑁 are given in Eqs. (15)–(16). In
he next section, we examine solutions of Eq. (18).
2

Fig. 1. Reobtaining the celebrated hopfion for 𝑚 = 𝑛. Electric (blue) and magnetic
(red) lines are perpendicular at the common point (0.35, 0.35, 0.35) in dimensionless
space units. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 2. The case 𝑚 = 4 and 𝑛 = 5. Electric (blue) and magnetic (red) lines are
perpendicular at the common point (0.35, 0.35, 0.35) in dimensionless space units. All
the lines are closed torus knots (4, 5) in this case. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. The case 𝑚 =
√

3 and 𝑛 = 2. Electric (blue) and magnetic (red) lines are
perpendicular at the common point (0.35, 0.35, 0.35) in dimensionless space units. The
ines are not closed but describe a torus shape region. (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version
f this article.)

. Solutions of the characteristic equation

In this section, we present a method to find solutions of the funda-
ental Eq. (18), which gives our fields the null character. Substituting

xpressions (15)–(17) into (18), we get

(𝛿′)2𝑅2 − 4𝛿𝛿′ −
𝛿2(2 − 𝜆) + 𝑅2

= 0, (19)

𝛿2 + 𝜆𝑅2
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Fig. 4. Magnetic field line (red) at (0.35, 0.35, 0.35) in dimensionless space units. We plot the cases (𝑚 = 3, 𝑛 = 3), (𝑚 = 4, 𝑛 = 5), (𝑚 = 5, 𝑛 = 6), (𝑚 = 8, 𝑛 = 9) and (𝑚 = 3, 𝑛 = 𝜋).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
i
w
r
v

c
I
t

a
t

where we have defined the parameter 𝜆 as the ratio

𝜆 = 𝑚2

𝑛2
. (20)

q. (19) can be solved algebraically for 𝛿′, obtaining

′ = 𝛿
2𝑅2

± 1
2𝑅2

𝛿2 + 𝑅2
√

𝛿2 + 𝜆𝑅2
. (21)

By making the change of variable 𝛿 = 𝑅𝑝, Eq. (21) tranforms into

𝑝′ = ± 1
2𝑅2

𝑝2 + 1
√

𝑝2 + 𝜆
. (22)

further change of variables

=
√

𝜆
𝜉

√

1 − 𝜉2
, (23)

llows us to solve (22) and find the following transcendental equations

ln𝑅 = 1
2
ln
(

1 + 𝜉
1 − 𝜉

)

+
√

𝜆 − 1 arctan
(
√

𝜆 − 1 𝜉
)

, (24)

for 𝜆 ≥ 1, and

± ln𝑅 = 1
2
ln
(

1 + 𝜉
1 − 𝜉

)

−
√

1 − 𝜆 argtanh
(
√

1 − 𝜆 𝜉
)

, (25)

for 𝜆 ≤ 1.
3

t

Eqs. (24) or (25) define the 𝛿 function implicitly through the rela-
tion

𝛿 = 𝑚
𝑛
𝑅

𝜉
√

1 − 𝜉2
. (26)

4. The topology of the new class

In this section we investigate by numerical methods the new class
of solutions found in the previous section. In particular, the topology
of the set of magnetic and electric lines of the electromagnetic fields
given, at a time 𝑡 = 0, by expressions (13)–(14). A general property is,
by construction, that electric and magnetic lines which passes through
the same point in the space will be orthogonal.

If the ratio 𝑚∕𝑛 is a rational number, the field lines are closed. As
t is shown in Fig. 1 , the particular case when 𝑚 = 𝑛 would be another
ay to find the Hopf fibration and the hopfion. But there is a whole

ange of new knotted and closed solutions when choosing different
alues. For example in Fig. 2 we have plotted the case 𝑚 = 4 and 𝑛 = 5.

Moreover, the solutions allow us to take an irrational ratio. In this
ase, the solutions still are orthogonal but they are not closed anymore.
nstead, they describe a torus shape surface. In Fig. 3 we have drawn
he particular case 𝑚 =

√

3 and 𝑛 = 2.
In Fig. 4 we have drawn only a magnetic field line and plotted

sequence of cases to clearly demonstrate how we can change the
opology of the field lines controlling the value of the 𝑚∕𝑛 ratio. When

he ratio becomes irrational, the line is not closed anymore.
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5. Conclusions

In this work, we have studied the possibility of finding electromag-
netic fields that are exact solutions of Maxwell equations in vacuum
and have the following properties at a fixed instant of time 𝑡 = 0: (i)
the magnetic and electric fields can be obtained from two complex
scalar fields 𝜙(𝐫) and 𝜃(𝐫) through the Rañada’s formulation (1)–(2)
of electromagnetic knots, and (ii) the solutions satisfy null conditions
𝐄 ⋅ 𝐁 = 0 and 𝐸2 − 𝑐2𝐵2 = 0. Our solutions generalize the hopfion
ntroduced by A. F. Rañada in [1] and provide new examples of
lectromagnetic knots [2] with different field line topologies. The new
lass includes Seifert fibrations as well as ergodic cases.

The complex scalar fields 𝜙 and 𝜃 are similar to the ones used in [4],
hat give field lines that form Seifert fibrations not conserved in time.
n order to satisfy the null field conditions, that will allow the structure
o be conserved, we have generalized these complex fields by making
hem dependent on two real numbers 𝑚 and 𝑛 and a function 𝛿(𝑟2).
sing Rañada’s formulation (1)–(2) and the null field conditions, we
ave found a highly nonlinear Eq. (19) that depends on (𝑚∕𝑛)2 to be

satisfied by the function 𝛿(𝑟2).
We have found exact and general solutions for the characteristic

Eq. (19). The numerical investigation of the field lines found in this new
class of electromagnetic knot solutions shows that closed lines forming
torus knots are obtained by taking 𝑚 and 𝑛 to be integer and coprime.
Moreover, other kind of topologies, in which the field lines are not
closed but describe a torus surface, are included into this solutions by
taking 𝑚∕𝑛 to be irrational.

The electromagnetic knot type of new solutions found in this work
will allow us to understand some interesting physical features of optics
and electromagnetism, as the relation between electromagnetic helicity
and the photon content with field line topology [6–9].

Dedication to Antonio F. Rañada

The influence of A. F. Rañada on the application of topology to
electromagnetism is difficult to overestimate. Our present work largely
builds on the achievements made by him during many years of his
active research. We had the pleasure of working with him and retain
very fond memories of Antonio’s commitment and insight in the field
he genuinely loved.
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