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Abstract: A class of vacuum electromagnetic fields in which the field lines are knotted curves are
reviewed. The class is obtained from two complex functions at a particular instant t = 0 so they
inherit the topological properties of red the level curves of these functions. We study the complete
topological structure defined by the magnetic and electric field lines at t = 0. This structure is not
conserved in time in general, although it is possible to red find special cases in which the field lines
are topologically equivalent for every value of t.
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1. Introduction

The application of topology to physics has lit up the understanding of some observed properties
in physical systems. In classical electromagnetism, with the application of topology one can obtain
electromagnetic fields with nontrivial properties [1]. Even using topological concepts one can get
quantization rules for the electromagnetic helicity [2] and the electric charge [3].

It is possible to find electromagnetic fields in vacuum where the field lines are the level curves
of two complex scalar fields φ(r, t), and θ(r, t), being maps from S3 to S2. A map f : S3 7→ S2 can be
classified by a Hopf index in homotopy classes, and that is related to the linking number of the one
dimensional manifolds which are the preimages of two different regular points in S2. So the field lines
can be linked in those electromagnetic fields.

From the maps φ(r, t) and θ(r, t), the magnetic field B and an electric field E are obtained as

B(r, t) =

√
a

2πi
∇φ×∇φ̄

(1 + φ̄φ)2 ,

E(r, t) =

√
ac

2πi
∇θ̄ ×∇θ

(1 + θ̄θ)2 , (1)

where f̄ denotes the complex conjugates of f and i the imaginary unit. The constant a carries the
physical dimensions and c is the speed of light.

Moreover, the fields constructed from maps φ and θ (1) satisfy

B(r, t) =

√
a

2πic(1 + θ̄θ)2

(
∂θ̄

∂t
∇θ − ∂θ

∂t
∇θ̄

)
,

E(r, t) =

√
a

2πi(1 + φ̄φ)2

(
∂φ̄

∂t
∇φ− ∂φ

∂t
∇φ̄

)
, (2)
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for being a solution of Maxwell’s equations in vacuum. The expressions (1) and (2) are the original
Rañada recipe to construct electromagnetic fields in vacuum.

Well known solutions as the Coulomb field, the plane electromagnetic wave, the stationary
electromagnetic wave, the electromagnetic field into a cavity or the magnetic field created by an infinite
solenoid present no big problems when studied as solutions of Equations (1) and (2), and the complex
maps φ(r, t), θ(r, t) have been obtained for them in previous references [4–6]. Those solutions show
how the model of electromagnetic in term of maps from S3 to S2 can be used to study topological
quantization conditions which can be included in Maxwell’s equations to explain topological aspects
of some physical quantities: charge, energy or magnetic flux.

The interest for the study of explicit solutions of Equations (1) and (2) also comes from the fact
that a physical quantity called the electromagnetic helicity [2], is the sum of the Hopf indices of the
maps as is explained in some references including [7,8]. Thus it turns out that solutions in which the
magnetic or the electric lines form links or knots, i. e. show nontrivial topology, can be related to the
physical concept of helicity and photon content of the field.

The first of these nontrivial solutions was obtained using the Hopf fibration. That solution
is known as the Hopf-Rañada electromagnetic knot [1] or hopfion and is related to the Robinson
congruence [9–11]. The maps φ(r, t), θ(r, t) for the Hopf-Rañada electromagnetic knot are [4]

φ =
(A X− T Z) + i(A Y + T (A− 1))
(A Z + T X) + i(A (A− 1)− T Y)

, (3)

θ =
(A Y + T (A− 1)) + i(A Z + T X)

(A X− T Z) + i(A (A− 1)− T Y)
, (4)

where A = (R2 − T2 + 1)/2, R2 = X2 + Y2 + Z2. We will use upper-case letters as dimensionless
quantities. In this field, any pair of magnetic lines or electric lines is a link, with linking numbers equal
to 1. This electromagnetic knot has been extensively studied [8,12–16]. A few generalizations of the
Hopf-Rañada solution have been found (see [17] and references therein for a review). For example,
in [4] it was showed that electromagnetic fields proportional to the Hopf-Rañada solution satisfy
Equations (1) and (2) only if the proportionality constant is an integer number, so the Hopf index is
equal to n2. Solutions with negative Hopf index −n2 were also found, all of them satisfying exactly
Equations (1) and (2).

In this work, we revise the construction of a class of solutions [18] which, in the general case, satisfy
equations (1) and (2) but for a particular time, this is for B(r, t0) and E(r, t0). At t0, by construction
there are two complex scalar fields φ0(r), θ0(r) which determine linked torus knots as field lines.
This class contains in particular the cases discussed in the previous paragraph, i. e. the Hopf-Rañada
electromagnetic knots. From the scalars maps φ0(r), θ0(r) we will obtain the Euler potentials [13,17] of
the field at that instant. The Euler potentials define manifolds and the field lines belong to the tangent
bundle of those surfaces. The intersection of two surfaces are the field lines as we will show. We will
give the expressions for the fields at any time, and we will end with some conclusions and remarks on
future work.

It remains an open question if it is possible to find φ and θ for all the time or at least to prove their
existence, and whether the topology is preserved or not in time.

2. Initial Conditions for the Fields

In this section we concentrate on the initial conditions of the fields. We will choose our maps in
such a way that the field lines form torus knots [18]. A torus knot is a closed curve lying on a torus
surface. It rotates n times around a circle contained in the interior of the torus while circling the torus
m times around its axis. If (n, m) are coprime we get a knot, otherwise we get a torus link and in this
case the number of components is equal to the greatest common divisor of n and m.

Let us take the maps φ0, θ0 : S3 → S2. As previously discussed, the preimage of any point in
S2 will be a closed curve in S3 and the linking number of any pair pair of curves is given by the
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Hopf index. We will denote the Hopf index as H(φ0) and H(θ0) for the maps φ0 and θ0 respectively.
Using Equation (1) we can find the associated fields at t = 0 as

B(r, 0) =
√

a
2πi
∇φ0 ×∇φ̄0

(1 + φ̄0φ0)2 , (5)

E(r, 0) =
√

ac
2πi
∇θ̄0 ×∇θ0

(1 + θ̄0θ0)2 . (6)

Note that using vector identities, the relations (5) and (6) satisfy∇ ·B = 0 and∇ ·E = 0, which are
two of the Maxwell equations which the fields in vacuum must satisfy, and in particular at t = 0.

The constant a in the SI units is related to the intensity of the electromagnetic field. Also in the SI
units, the coordinates (x, y, z, t) and the dimensionless ones (X, Y, Z, T), are related by (X, Y, Z, T) =
(x, y, z, ct)/L0. As before c is the speed of light and L0 is a characteristic length which quantifies
the size of the knot. Indeed L0 can be identified with the mean radius of the energy density of the
electromagnetic field [12]. We will also use the relation

r2

L2
0
=

x2 + y2 + z2

L2
0

= X2 + Y2 + Z2 = R2. (7)

For our torus-knotted electromagnetic fields [18], we take the maps,

φ0 =
(X + iY)(n)

(Z + i(R2 − 1)/2)(m)
, (8)

θ0 =
(Y + iZ)(l)

(X + i(R2 − 1)/2)(s)
. (9)

The notation η(i) means to leave the modulus of η invariant while the phase of η is multiplied by
an integer number i.

Any regular value of the maps φ0 or θ0, has a 1-dimensional preimage in R3 which depending on
the integers n, m, l, s is a torus knot [19]. For the map φ0, the Hopf index of a pair of such preimages is
H(φ0) = nm and for the map θ0 is H(θ0) = ls. The field lines are then linked torus knots.

Using the electromagnetic vector potentials A and C, so that B = ∇ × A and E = ∇ × C,
we can define the magnetic and electric helicities. Their initial values can be calculated using
Equations (5) and (6) and are proportional to the Hopf indexes of the maps. Thus,

hm(t = 0) =
1

2cµ0

∫
d3r A · B =

a
2cµ0

H(φ), (10)

he(t = 0) =
ε0

2c

∫
d3r C · E =

a
2cµ0

H(θ). (11)

Here ε0 = 1/(c2µ0) is the vacuum electric permittivity and helicities have dimensions of
angular momentum.

3. The Fibration of the Electromagnetic Fields at t = 0

Let us consider the problem of describing at t = 0, the field lines given by Equations (5) and (6).
We will present and make use of the Euler potentials (see [17] and references therein). The field lines
have the property of being tangent to the field vectors at any point of space. The magnetic line passing
through r0 at time t0 is the integral curve r(τ) that satisfies

dr(τ)
dτ

= B(r(τ), t0),

r(τ)|τ=0 = r0. (12)
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Here, the curve is parametrized by τ which is related to the arc length of the curve
ds =

√
(dx)2 + (dy)2 + (dz)2 by dτ = ds/B, being B the modulus of the magnetic field.

The Euler potentials are defined as two real functions α1(r, t) and α2(r, t) such that

B = ∇α1 ×∇α2. (13)

Euler potentials determine magnetic surfaces for a constant value. The intersection of two
magnetic surfaces gives the corresponding field line. Thus α1(r, t0) = k1, α2(r, t0) = k2 determine
a electric field line.

For the electric field in vacuum, since ∇ · E = 0, we can define also Euler potentials as real
function β1 ∈ R and β2 ∈ R so that

E = ∇β2 ×∇β1. (14)

Again the intersections of the magnetic and electric surfaces give the corresponding magnetic and
electric field lines. In particular, β1(r, t0) = k′1, β2(r, t0) = k′2 determines a electric field line.

The complex scalar fields φ0 and θ0 in Equations (5) and (6) define Euler potentials of the magnetic
and the electric field, and by construction the intersection of the surfaces of constant value are knotted
field lines at initial time t = 0. Let us then obtain the Euler potentials. Since φ0 is a complex
map, we take its modulus |φ0| =

√
(<(φ0))2 + (=(φ0))2 and argument Aφ0 = arctan (=(φ0)/<(φ0)),

so that
φ0 = |φ0| eiAφ0 . (15)

Then, by (5),

B(r, t = 0) =
√

a∇
(

1

1 + |φ0|2

)
×∇

(Aφ0

2π

)
. (16)

Thus the Euler potentials are

α1(r) =
1

1 + |φ0|2
,

α2(r) =
Aφ0

2π
. (17)

For the electric field, we again take the modulus of the complex field θ0 as
|θ0| =

√
(<(θ0))2 + (=(θ0))2 and its argument as Aθ0 = arctan (=(θ0)/<(θ0)). Substituting into

Equation (6) turns out to be,

E(r, t = 0) = −c
√

a∇
(

1

1 + |θ0|2

)
×∇

(Aθ0

2π

)
. (18)

Then the Euler potentials of the electric field turn out to be

β1(r) =
1

1 + |θ0|2
,

β2(r) =
Aθ0

2π
. (19)
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Thus for the set of non-null knotted electromagnetic fields at t = 0, given by the complex
functions (8) and (9), the Euler potentials are

α1(r) =
4Z2 + (R2 − 1)2

(R2 + 1)2 , (20)

α2(r) =
1

2π

[
n arctan

(
Y
X

)
−m arctan

(
2Z

R2 − 1

)]
,

β1(r) =
4X2 + (R2 − 1)2

(R2 + 1)2 ,

β2(r) =
1

2π

[
l arctan

(
Z
Y

)
− s arctan

(
2X

R2 − 1

)]
.

As pointed earlier, the magnetic lines are then given by the equations α1 = k1 and α2 = k2,
and analogously β1 = k′1 and β2 = k′2 give the electric field lines.

Consider first the magnetic surfaces. In Figure 1, we plot some surfaces α1(r) = k1,
where 0 ≤ k1 ≤ 1. From (20) the surfaces are given by

(1− k1)R4 − 2(1 + k1)R2 + 4Z2 + (1− k1) = 0. (21)

The magnetic surfaces for k1 = 0 and k1 = 1 are singular. For k1 = 1, it is the Z-axis, and for
k1 = 0 we have the curve X2 + Y2 = 1, so the surfaces degenerate to magnetic lines. For 0 < k1 < 1,
the magnetic surfaces α1(r) = k1 are nested tori, meaning that the magnetic lines (5) will lie on
these tori.

Figure 1. Magnetic surfaces given by the Euler potential α1 = k1, with k1 = 0.001, 0.09, 0.5, 0.75, 0.9998.

The magnetic surfaces α2(r) = k2 are given by

n arctan
(

Y
X

)
−m arctan

(
2Z

R2 − 1

)
= 2πk2, (22)

for different values of k2. The surfaces given by Equation (22) are not tori and we plot some particular
cases in Figure 2.
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Figure 2. Magnetic surfaces given by the Euler potential α2 = k2, with (n, m) = (1, 1) and k2 = 0, ∞.

The magnetic lines are the intersections of the surfaces α1(r) = k1 with the surfaces α2(r) = k2.
In Figure 3 we have plotted the intersection of two magnetic surfaces. All these magnetic lines form
linked torus knots.

Figure 3. The intersection of magnetic surfaces for α1 = 0.3 and α2 = 1/8 for (n, m) = (1, 1).

The electric surfaces given by β1(r) = k′1, with 0 ≤ k′1 ≤ 1, satisfy

(1− k′1)R4 − 2(1 + k′1)R2 + 4X2 + (1− k′1) = 0. (23)

This equation is similar to (21) for the magnetic case, with the change Z → X. Thus the electric
surfaces β1(r) = k′1 can be seen as a π/2-rotation of the magnetic surfaces α1(r) = k′1 along the Y-axis.
In Figure 4 we show some examples. Again the case k′1 = 1, is singular and the surface is the X-axis.
For k′1 = 0 we have another singular surface, that is the circle Y2 + Z2 = 1. For 0 < k′1 < 1, the electric
surfaces β1(r) = k′1 are nested tori. So the structure is the same as in Figure 1 with a π/2 rotation
around the Y-axis as we can see in Figure 4.

The electric surfaces β2(r) = k′2 are given by

l arctan
(

Z
Y

)
− s arctan

(
2X

R2 − 1

)
= 2πk′2. (24)
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This expression can be obtained from (23) with the changes X → Y, Y → Z, Z → X, n → l,
m → s. As before, any electric field line, obtained as the intersection of a pair of electric surfaces,
is topologically equivalent to a torus knot.

Figure 4. Magnetic surfaces given by the Euler potential β1 = k′1, with k′1 = 0.001, 0.09, 0.5, 0.6, 0.9998.

4. The Vacuum Fields at Any Time

Having discussed the initial configuration of the field lines of our torus knotted solutions, we can
find the evolution of those field lines by solving the Cauchy problem for the system of Maxwell
equations. Our initial configuration will be the initial conditions to satisfy. However, so far it is an open
question if the magnetic and electric surfaces exist and can be explicitly calculated for the general case.

To solve Maxwell’s equations in vacuum, Fourier analysis can be used. We give here the
solutions obtained in [18]. Thus Maxwell fields in vacuum with the initial conditions given by
expressions (5) and (6) are

B(r, t) =
√

a
πL2

0

Q H1 + P H2

(A2 + T2)3 , (25)

E(r, t) =
√

ac
πL2

0

Q H4 − P H3

(A2 + T2)3 , (26)

being

A =
R2 − T2 + 1

2
, (27)

P = T(T2 − 3A2), (28)

Q = A(A2 − 3T2), (29)
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and

H1 = (−n XZ + m Y + s T) ux + (−n YZ−m X− l TZ) uy

+

(
n
−1− Z2 + X2 + Y2 + T2

2
+ l TY

)
uz,

H2 =

(
s

1 + X2 −Y2 − Z2 − T2

2
−m TY

)
ux

+ (s XY− l Z + m TX) uy + (s XZ + l Y + n T) uz,

H3 = (−m XZ + n Y + l T) ux + (−m YZ− n X− s TZ) uy

+

(
m
−1− Z2 + X2 + Y2 + T2

2
+ s TY

)
uz,

H4 =

(
l

1 + X2 −Y2 − Z2 − T2

2
− n TY

)
ux

+ (l XY− s Z + n TX) uy + (l XZ + s Y + m T) uz. (30)

For the particular case (n, m, s, l) = (1, 1, 1, 1) we recover the Hopf-Rañada solution mentioned
in the introduction section. For this particular case, maps φ and θ are known for any time,
the Euler potentials can be found for any time, and the magnetic and electric helicities are constant.
Using Equations (10) and (11) we can get the values of the Hopf index for any time, and prove that
the topology property of the linking of curves is preserved in time. So the field lines remain closed and
linked. This result can be generalized for the case (n, m, l, s) = (1, 1, 1, 1)× N, being N an integer.

In the general case, for an arbitrary (n, m, s, l)-tuplet it remains an open question if the topology
of the field lines is preserved. We have found numerical evidence of the existence of open curves for
T > 0.

5. Discussion

In this work, the set of non-null torus-knotted electromagnetic fields, presented in [18], have been
reviewed. The fields have the property that at a given instant of time t = 0, every magnetic line is
a (n, m)-torus knot and is linked to another magnetic line. The electric lines are also (l, s) torus knots,
each one linked to any other electric line.

We have calculated the Euler potentials [13,17] of such fields, and used them to study the
configuration of electric and magnetic field lines at t = 0. We have seen how the fibration defined by
the Euler potentials at t = 0 consists of linked torus knots.

It seems that the topological structure of the field lines is not preserved when the fields evolve in
time in the general case, although it is preserved in the particular cases in which n = m = l = s = N
with N an arbitrary integer. The complete understanding of the processes that produce the change of
topology in some of these electromagnetic fields is an open problem.
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